Alpha#1
计算逻辑:(rank(Ts_ArgMax(SignedPower(((returns < 0) ? stddev(returns, 20) : close), 2.), 5)) -0.5)
def alpha001(self):
inner = copy.deepcopy(self.close)
inner[self.returns < 0] = stddev(self.returns, 20)
return rank(ts_argmax(inner ** 2, 5))
Alpha#2
计算逻辑:(-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))
def alpha002(self):
df = -1 * correlation(rank(delta(log(self.volume), 2)), rank((self.close - self.open) / self.open), 6)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
Alpha#3
计算逻辑:(-1 * correlation(rank(open), rank(volume), 10))
def alpha003(self):
df = -1 * correlation(rank(self.open), rank(self.volume), 10)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
Alpha#4
计算逻辑:(-1 * Ts_Rank(rank(low), 9))
def alpha004(self):
return -1 * ts_rank(rank(self.low), 9)
Alpha#5
计算逻辑:(rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))
def alpha005(self):
return (rank((self.open - (sum(self.vwap, 10) / 10))) * (-1 * abs(rank((self.close - self.vwap)))))
Alpha#6
计算逻辑:(-1 * correlation(open, volume, 10))
def alpha006(self):
df = -1 * correlation(self.open, self.volume, 10)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
Alpha#7
计算逻辑:((adv20 < volume) ? ((-1 * ts_rank(abs(delta(close, 7)), 60)) * sign(delta(close, 7))) : (-1 1))*
def alpha007(self):
adv20 = sma(self.volume, 20)
alpha = -1 * ts_rank(abs(delta(self.close, 7)), 60) * sign(delta(self.close, 7))
alpha[adv20 >= self.volume] = -1
return alpha
Alpha#8
计算逻辑:(-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)),10))))
def alpha008(self):
return -1 * (rank(((ts_sum(self.open, 5) * ts_sum(self.returns, 5)) -
delay((ts_sum(self.open, 5) * ts_sum(self.returns, 5)), 10))))
Alpha#9
计算逻辑:((0 < ts_min(delta(close, 1), 5)) ? delta(close, 1) : ((ts_max(delta(close, 1), 5) < 0) ?delta(close, 1) : (-1 * delta(close, 1))))
def alpha009(self):
delta_close = delta(self.close, 1)
cond_1 = ts_min(delta_close, 5) > 0
cond_2 = ts_max(delta_close, 5) < 0
alpha = -1 * delta_close
alpha[cond_1 | cond_2] = delta_close
return alpha
Alpha#10
计算逻辑:rank(((0 < ts_min(delta(close, 1), 4)) ? delta(close, 1) : ((ts_max(delta(close, 1), 4) < 0)? delta(close, 1) : (-1 * delta(close, 1)))))
def alpha010(self):
delta_close = delta(self.close, 1)
cond_1 = ts_min(delta_close, 4) > 0
cond_2 = ts_max(delta_close, 4) < 0
alpha = -1 * delta_close
alpha[cond_1 | cond_2] = delta_close
return alpha
Alpha#11
*计算逻辑:((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) rank(delta(volume, 3)))
def alpha011(self):
return ((rank(ts_max((self.vwap - self.close), 3)) + rank(ts_min((self.vwap - self.close), 3))) *rank(delta(self.volume, 3)))
Alpha#12
计算逻辑:(sign(delta(volume, 1)) * (-1 * delta(close, 1)))
def alpha012(self):
return sign(delta(self.volume, 1)) * (-1 * delta(self.close, 1))
Alpha#13
计算逻辑:(-1 * rank(covariance(rank(close), rank(volume), 5)))
def alpha013(self):
return -1 * rank(covariance(rank(self.close), rank(self.volume), 5))
Alpha#14
计算逻辑:((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))
def alpha014(self):
df = correlation(self.open, self.volume, 10)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * rank(delta(self.returns, 3)) * df
Alpha#15
计算逻辑:(-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))
def alpha015(self):
df = correlation(rank(self.high), rank(self.volume), 3)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * ts_sum(rank(df), 3)
Alpha#16
计算逻辑:(-1 * rank(covariance(rank(high), rank(volume), 5)))
def alpha016(self):
return -1 * rank(covariance(rank(self.high), rank(self.volume), 5))
Alpha#17
*计算逻辑:(((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) rank(ts_rank((volume / adv20), 5)))
def alpha017(self):
adv20 = sma(self.volume, 20)
return -1 * (rank(ts_rank(self.close, 10)) *
rank(delta(delta(self.close, 1), 1)) *
rank(ts_rank((self.volume / adv20), 5)))
Alpha#18
计算逻辑:(-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open,10))))
def alpha018(self):
df = correlation(self.close, self.open, 10)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * (rank((stddev(abs((self.close - self.open)), 5) + (self.close - self.open)) +
df))
Alpha#19
计算逻辑:((-1 * sign(((close - delay(close, 7)) + delta(close, 7)))) * (1 + rank((1 + sum(returns,250)))))
def alpha019(self):
return ((-1 * sign((self.close - delay(self.close, 7)) + delta(self.close, 7))) *
(1 + rank(1 + ts_sum(self.returns, 250))))
Alpha#20
计算逻辑:(((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open -delay(low, 1))))
def alpha020(self):
return -1 * (rank(self.open - delay(self.high, 1)) *
rank(self.open - delay(self.close, 1)) *
rank(self.open - delay(self.low, 1)))
Alpha#21
计算逻辑:((((sum(close, 8) / 8) + stddev(close, 8)) < (sum(close, 2) / 2)) ? (-1 * 1) : (((sum(close,2) / 2) < ((sum(close, 8) / 8) - stddev(close, 8))) ? 1 : (((1 < (volume / adv20)) || ((volume /adv20) == 1)) ? 1 : (-1 * 1))))
def alpha021(self):
cond_1 = sma(self.close, 8) + stddev(self.close, 8) < sma(self.close, 2)
cond_2 = sma(self.volume, 20) / self.volume < 1
alpha = pd.DataFrame(np.ones_like(self.close), index=self.close.index
)
# alpha = pd.DataFrame(np.ones_like(self.close), index=self.close.index,
# columns=self.close.columns)
alpha[cond_1 | cond_2] = -1
return alpha
Alpha#22
计算逻辑:(-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))
def alpha022(self):
df = correlation(self.high, self.volume, 5)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * delta(df, 5) * rank(stddev(self.close, 20))
Alpha#23
计算逻辑:(((sum(high, 20) / 20) < high) ? (-1 * delta(high, 2)) : 0)
def alpha023(self):
cond = sma(self.high, 20) < self.high
alpha = pd.DataFrame(np.zeros_like(self.close),index=self.close.index,columns=['close'])
alpha.at[cond,'close'] = -1 * delta(self.high[cond], 2).fillna(value=0)
return alpha
Alpha#24
计算逻辑:((((delta((sum(close, 100) / 100), 100) / delay(close, 100)) < 0.05) ||((delta((sum(close, 100) / 100), 100) / delay(close, 100)) == 0.05)) ? (-1 * (close - ts_min(close,100))) : (-1 * delta(close, 3)))
def alpha024(self):
cond = delta(sma(self.close, 100), 100) / delay(self.close, 100) <= 0.05
alpha = -1 * delta(self.close, 3)
alpha[cond] = -1 * (self.close - ts_min(self.close, 100))
return alpha
Alpha#25
计算逻辑:rank(((((-1 * returns) * adv20) * vwap) * (high - close)))
def alpha025(self):
adv20 = sma(self.volume, 20)
return rank(((((-1 * self.returns) * adv20) * self.vwap) * (self.high - self.close)))