ALPHA_101因子(01_25)

本文介绍了25种不同的Alpha因子计算逻辑,这些逻辑涉及股票市场的价格、交易量、收益率等指标,用于构建量化交易策略。每个因子通过不同的数学运算和统计方法,如标准差、相关性、协方差等,捕捉股票价格变动的潜在信息。这些因子可用于预测股票表现,为投资决策提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Alpha#1

计算逻辑:(rank(Ts_ArgMax(SignedPower(((returns < 0) ? stddev(returns, 20) : close), 2.), 5)) -0.5)

def alpha001(self):
    inner = copy.deepcopy(self.close)
    inner[self.returns < 0] = stddev(self.returns, 20)
    return rank(ts_argmax(inner ** 2, 5))

Alpha#2

计算逻辑:(-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))

def alpha002(self):
    df = -1 * correlation(rank(delta(log(self.volume), 2)), rank((self.close - self.open) / self.open), 6)
    return df.replace([-np.inf, np.inf], 0).fillna(value=0)

Alpha#3

计算逻辑:(-1 * correlation(rank(open), rank(volume), 10))

def alpha003(self):
    df = -1 * correlation(rank(self.open), rank(self.volume), 10)
    return df.replace([-np.inf, np.inf], 0).fillna(value=0)

Alpha#4

计算逻辑:(-1 * Ts_Rank(rank(low), 9))

def alpha004(self):
      return -1 * ts_rank(rank(self.low), 9)

Alpha#5

计算逻辑:(rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))

def alpha005(self):
        return  (rank((self.open - (sum(self.vwap, 10) / 10))) * (-1 * abs(rank((self.close - self.vwap)))))

Alpha#6

计算逻辑:(-1 * correlation(open, volume, 10))

def alpha006(self):
        df = -1 * correlation(self.open, self.volume, 10)
        return df.replace([-np.inf, np.inf], 0).fillna(value=0)

Alpha#7

计算逻辑:((adv20 < volume) ? ((-1 * ts_rank(abs(delta(close, 7)), 60)) * sign(delta(close, 7))) : (-1 1))*

def alpha007(self):
        adv20 = sma(self.volume, 20)
        alpha = -1 * ts_rank(abs(delta(self.close, 7)), 60) * sign(delta(self.close, 7))
        alpha[adv20 >= self.volume] = -1
        return alpha

Alpha#8

计算逻辑:(-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)),10))))

def alpha008(self):
        return -1 * (rank(((ts_sum(self.open, 5) * ts_sum(self.returns, 5)) -
                           delay((ts_sum(self.open, 5) * ts_sum(self.returns, 5)), 10))))

Alpha#9

计算逻辑:((0 < ts_min(delta(close, 1), 5)) ? delta(close, 1) : ((ts_max(delta(close, 1), 5) < 0) ?delta(close, 1) : (-1 * delta(close, 1))))

def alpha009(self):
        delta_close = delta(self.close, 1)
        cond_1 = ts_min(delta_close, 5) > 0
        cond_2 = ts_max(delta_close, 5) < 0
        alpha = -1 * delta_close
        alpha[cond_1 | cond_2] = delta_close
        return alpha

Alpha#10

计算逻辑:rank(((0 < ts_min(delta(close, 1), 4)) ? delta(close, 1) : ((ts_max(delta(close, 1), 4) < 0)? delta(close, 1) : (-1 * delta(close, 1)))))

def alpha010(self):
        delta_close = delta(self.close, 1)
        cond_1 = ts_min(delta_close, 4) > 0
        cond_2 = ts_max(delta_close, 4) < 0
        alpha = -1 * delta_close
        alpha[cond_1 | cond_2] = delta_close
        return alpha

Alpha#11

*计算逻辑:((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) rank(delta(volume, 3)))

def alpha011(self):
        return ((rank(ts_max((self.vwap - self.close), 3)) + rank(ts_min((self.vwap - self.close), 3))) *rank(delta(self.volume, 3)))

Alpha#12

计算逻辑:(sign(delta(volume, 1)) * (-1 * delta(close, 1)))

def alpha012(self):
        return sign(delta(self.volume, 1)) * (-1 * delta(self.close, 1))

Alpha#13

计算逻辑:(-1 * rank(covariance(rank(close), rank(volume), 5)))

def alpha013(self):
        return -1 * rank(covariance(rank(self.close), rank(self.volume), 5))

Alpha#14

计算逻辑:((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))

def alpha014(self):
        df = correlation(self.open, self.volume, 10)
        df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
        return -1 * rank(delta(self.returns, 3)) * df

Alpha#15

计算逻辑:(-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))

def alpha015(self):
        df = correlation(rank(self.high), rank(self.volume), 3)
        df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
        return -1 * ts_sum(rank(df), 3)

Alpha#16

计算逻辑:(-1 * rank(covariance(rank(high), rank(volume), 5)))

def alpha016(self):
        return -1 * rank(covariance(rank(self.high), rank(self.volume), 5))

Alpha#17

*计算逻辑:(((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) rank(ts_rank((volume / adv20), 5)))

def alpha017(self):
        adv20 = sma(self.volume, 20)
        return -1 * (rank(ts_rank(self.close, 10)) *
                     rank(delta(delta(self.close, 1), 1)) *
                     rank(ts_rank((self.volume / adv20), 5)))

Alpha#18

计算逻辑:(-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open,10))))

def alpha018(self):
        df = correlation(self.close, self.open, 10)
        df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
        return -1 * (rank((stddev(abs((self.close - self.open)), 5) + (self.close - self.open)) +
                          df))

Alpha#19

计算逻辑:((-1 * sign(((close - delay(close, 7)) + delta(close, 7)))) * (1 + rank((1 + sum(returns,250)))))

def alpha019(self):
        return ((-1 * sign((self.close - delay(self.close, 7)) + delta(self.close, 7))) *
                (1 + rank(1 + ts_sum(self.returns, 250))))

Alpha#20

计算逻辑:(((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open -delay(low, 1))))

def alpha020(self):
        return -1 * (rank(self.open - delay(self.high, 1)) *
                     rank(self.open - delay(self.close, 1)) *
                     rank(self.open - delay(self.low, 1)))

Alpha#21

计算逻辑:((((sum(close, 8) / 8) + stddev(close, 8)) < (sum(close, 2) / 2)) ? (-1 * 1) : (((sum(close,2) / 2) < ((sum(close, 8) / 8) - stddev(close, 8))) ? 1 : (((1 < (volume / adv20)) || ((volume /adv20) == 1)) ? 1 : (-1 * 1))))

def alpha021(self):
        cond_1 = sma(self.close, 8) + stddev(self.close, 8) < sma(self.close, 2)
        cond_2 = sma(self.volume, 20) / self.volume < 1
        alpha = pd.DataFrame(np.ones_like(self.close), index=self.close.index
                             )
        #        alpha = pd.DataFrame(np.ones_like(self.close), index=self.close.index,
        #                             columns=self.close.columns)
        alpha[cond_1 | cond_2] = -1
        return alpha

Alpha#22

计算逻辑:(-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))

def alpha022(self):
        df = correlation(self.high, self.volume, 5)
        df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
        return -1 * delta(df, 5) * rank(stddev(self.close, 20))

Alpha#23

计算逻辑:(((sum(high, 20) / 20) < high) ? (-1 * delta(high, 2)) : 0)

def alpha023(self):
        cond = sma(self.high, 20) < self.high
        alpha = pd.DataFrame(np.zeros_like(self.close),index=self.close.index,columns=['close'])
        alpha.at[cond,'close'] = -1 * delta(self.high[cond], 2).fillna(value=0)
        return alpha

Alpha#24

计算逻辑:((((delta((sum(close, 100) / 100), 100) / delay(close, 100)) < 0.05) ||((delta((sum(close, 100) / 100), 100) / delay(close, 100)) == 0.05)) ? (-1 * (close - ts_min(close,100))) : (-1 * delta(close, 3)))

def alpha024(self):
        cond = delta(sma(self.close, 100), 100) / delay(self.close, 100) <= 0.05
        alpha = -1 * delta(self.close, 3)
        alpha[cond] = -1 * (self.close - ts_min(self.close, 100))
        return alpha

Alpha#25

计算逻辑:rank(((((-1 * returns) * adv20) * vwap) * (high - close)))

def alpha025(self):
        adv20 = sma(self.volume, 20)
        return rank(((((-1 * self.returns) * adv20) * self.vwap) * (self.high - self.close)))
### Alpha101因子量化投资策略 #### 定义与背景 Alpha101因子指的是由一系列特定公式定义的金融指标,用于评估个股表现并预测未来走势。这些因子被广泛应用于量化投资领域,帮助投资者识别具有潜力的投资机会。 #### 实现方法 为了实现基于Alpha101因子的投资策略,通常会经历以下几个方面的工作: - **数据收集**:获取历史行情数据以及财务报表等公开资料作为输入源。 - **因子计算**:按照既定公式对每一只股票计算其对应的因子值。例如,在Python环境中可以通过如下方式来表达alpha002因子计算过程[^1]: ```python import numpy as np import pandas as pd def calculate_alpha002(data): """ 计算alpha002因子. 参数: data (DataFrame): 包含'close', 'volume'列的历史价格和成交量数据 返回: DataFrame: 新增一列名为'alpha002'的数据框, 表示该因子的结果 """ close = data['close'] volume = data['volume'] # 这里仅提供了一个简化版的例子, # 实际应用中的具体公式可能更加复杂 alpha002 = ((close - close.shift(1)) / close.shift(1)).rolling(window=5).mean() * volume result_df = data.copy() result_df['alpha002'] = alpha002 return result_df ``` - **组合构建**:依据各股的因子得分挑选出预期回报较高的标的组成投资组合;同时考虑加入其他类型的因子(如市值、成长性等因素),形成多元化的多因子体系以分散单一因素带来的不确定性风险[^2]。 - **风险管理**:采用诸如止损机制或是动态调整仓位比例等方式控制整体资产波动幅度,力求提升夏普比率的同时减少最大回撤程度[^4]。 #### 应用实例 假设现在有一个包含某段时间内沪深两市全部A股的日线级交易记录表`stock_data`,那么就可以调用上述函数对其进行处理得到新的带有alpha002因子字段的数据集,并进一步筛选出那些在过去一段时间表现出良好趋势特征且当前估值合理的公司进行建仓操作。 此外还可以结合机器学习算法比如神经网络来进行更深层次的研究探索,试图挖掘隐藏于海量数据背后的规律模式,进而优化决策流程提高盈利水平[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值