LeetCode 热题 HOT 100 第六天

本文介绍了四个使用动态规划解决的算法问题:26.不同路径、27.最小路径和、28.爬楼梯和29.编辑距离。每个问题都给出了详细的解决方案,并展示了如何通过动态规划求解复杂问题。此外,还提供了两种解决30.颜色分类问题的方法:三指针和排序。这些例子展示了动态规划和算法在实际问题中的应用。

26. 不同路径

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        for (int i = 0; i < m; i ++ ) f[i][0] = 1;
        for (int i = 0; i < n; i ++ ) f[0][i] = 1;

        for (int i = 1; i < m; i ++ )
            for (int j = 1; j < n; j ++ )
                f[i][j] += f[i - 1][j] + f[i][j - 1];
        
        return f[m - 1][n - 1];
    }
};

27. 最小路径和

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int n = grid.size(), m = grid[0].size();
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < m; j ++ ) {
                if (!i && !j) continue;
                else {
                    if (i && j) grid[i][j] += min(grid[i - 1][j], grid[i][j - 1]);
                    else if (j) grid[i][j] += grid[i][j - 1];
                    else if (i) grid[i][j] += grid[i - 1][j];
                }
            }
        
        return grid[n - 1][m - 1];
    }
};

28. 爬楼梯

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 3) return n;
        int a = 2, b = 3, c = 0;
        for (int i = 4; i <= n; i ++ )
        {a
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }
};

29. 编辑距离

思路:动态规划

集合:f[i,j]f[i,j]f[i,j]表示将 word1word1word1的前 iii 个字符变成 word2word2word2的前 jjj 个字符,最少需要进行多少次操作
状态转移:最后一个状态转移有六种状态,分别是:
修改、删除、替换第一个字符串末尾,修改、删除、替换第二个字符串的末尾元素

class Solution {
public:
    int minDistance(string a, string b) {
        int n = a.size(), m = b.size();
        a = ' ' + a, b = ' ' + b;
        vector<vector<int>> f(n + 1, vector<int>(m + 1));
        for (int i = 0; i <= n; i ++ ) f[i][0] = i;
        for (int i = 1; i <= m; i ++ ) f[0][i] = i;

        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= m; j ++ ) {
                f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1;
                int t = a[i] != b[j];
                f[i][j] = min(f[i][j], f[i - 1][j - 1] + t);
            }
        return f[n][m];
    }
};

30. 颜色分类

思路1:三指针

0——j−10——j - 10j1维护一段为0的元素,j——i−1j——i-1ji1维护为1的元素,k+1——nums.size()−1k+1——nums.size()-1k+1nums.size()1维护为2的元素,这三段元素有序

class Solution {
public:
    void sortColors(vector<int>& nums) {
        for (int i = 0, j = 0, k = nums.size() - 1; i <= k;) {
            if (nums[i] == 0) swap(nums[i ++ ], nums[j ++ ]);
            else if (nums[i] == 2) swap(nums[i], nums[k -- ]);
            else i ++ ;
        }
    }
};

思路二:

正常比赛中,先扫描一遍,计算0、1、2的个数,输出就可以了

在这里插入代码片

思路三:排序

class Solution {
public:
    void sortColors(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        }
    }
};
<think>好的,用户想了解如何高效地完成或学习LeetCode Hot 100的策略与技巧。首先,我需要回忆自己之前积累的相关知识,并结合用户提供的引用内容来组织回答。 用户提供的三个引用中,引用[1]提到每天坚持一,系统学习计划;引用[2]是关于双指针技巧的示例代码;引用[3]涉及动态规划中的二维数组应用。这些都可以作为回答的素材。 首先,LeetCode Hot 100是高频面试,用户可能正在准备面试,需要高效刷。他们可能希望知道时间安排、目分类、重点算法等策略,以及具体的解技巧,比如双指针、动态规划等。 接下来,我应该分步骤来回答。常见的高效策略包括制定计划、分类突破、总结模板等。然后,结合引用中的例子,比如双指针和动态规划,说明如何应用这些技巧。此外,引用[1]提到的每日坚持和系统学习计划可以作为制定计划的部分内容。 另外,用户可能还关心如何避免常见错误,如何优化时间复杂度和空间复杂度,以及如何利用社区资源。需要确保回答结构清晰,分点列出,每个策略下给出具体的方法和例子,比如使用双指针解决移动零的问(引用[2]),或者动态规划的背包问(引用[3])。 最后,生成相关问,帮助用户进一步深入理解,比如如何分析时间复杂度,或者动态规划的优化方法。这些问需要与用户的问相关,并且能引导他们继续学习。 在组织语言时,要使用中文,保持自然,避免使用Markdown格式,同时确保LaTeX公式的正确使用,行内公式用$...$,独立公式用$$...$$。引用标注要自然地放在句末,如[^1]。 需要检查是否有遗漏的关键点,比如是否需要提到刷顺序、如何做笔记、复习方法等。另外,确保每个建议都有实际例子或引用支持,增强可信度。 总结,回答应包括以下部分: 1. 系统学习计划(引用[1]) 2. 分类突破,重点算法(如双指针、动态规划,引用[2][3]) 3. 模板和套路总结 4. 时间管理和复习策略 5. 社区资源利用 6. 相关问生成 确保每个部分简明扼要,策略和技巧具体可行,帮助用户高效刷。</think>### 如何高效学习LeetCode Hot 100? #### 一、系统学习计划与优先级策略 1. **分阶段攻克** - **第一阶段(基础)**:优先选择**出现频率高且难度中等**的目,如双指针、链表、二叉树等基础型(例如目《移动零》[^2])。 - **第二阶段(进阶)**:重点突破动态规划、回溯、贪心等复杂算法,例如《背包问》的二维DP解法[^3]。 - **第三阶段(综合)**:刷完所有目后,按公司真分类训练,强化高频考点。 2. **时间分配** 每天坚持1-2,每控制**30-60分钟**,超时则看解并总结[^1]。周末集中复习错。 #### 二、分类突破与核心技巧 1. **高频算法分类** - **双指针**:用于数组、链表操作,如《移动零》的原地交换[^2]。 代码片段示例: ```python def moveZeroes(nums): left = 0 for right in range(len(nums)): if nums[right] != 0: nums[left], nums[right] = nums[right], nums[left] left += 1 ``` - **动态规划**:掌握状态转移方程设计,如背包问的递推式: $$dp[i][j] = \max(dp[i-1][j], dp[i-1][j-w_i] + v_i)$$ - **回溯剪枝**:通过条件判断减少递归分支,如排列问中跳过重复元素。 2. **模板化思维** - **二分查找**:固定循环条件`left <= right`,明确`mid`更新逻辑。 - **二叉树遍历**:递归与非递归模板需熟记,例如前序、层序遍历。 #### 三、实战技巧与工具 1. **代码调试与优化** - 使用**测试用例驱动开发**(TDD),先写出边界案例(如空数组、极值)。 - 优化时分析时间/空间复杂度,优先优化**嵌套循环**或**重复计算**。 2. **利用社区资源** - 参考力扣官方解的**最优解**,学习代码简洁性。 - 参与讨论区,关注**相似归纳**(如《两数之和》与《三数之和》的联系)。 #### 四、总结与复习 1. **错本与思维导图** - 记录每的**关键思路**和易错点,例如动态规划初始化条件。 - 按算法类型整理思维导图,强化知识网络。 2. **模拟面试训练** - 使用力扣模拟面试功能,限时完成目,提升临场应变能力。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shirandexiaowo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值