【CVRP物流配送车辆路径规划问题(带容量限制)】遗传算法GA求解

课题名称:遗传算法求解带容量限制的物流配送车辆路径问题CVRP

版本时间:2023-03-12

代码获取方式:

QQ:491052175

VX:Matlab_Lover

模型描述:

设某配送中心有K辆车,每辆车的最大载重量为CarLoad,需要对CityNum个客户城市

进行运输配送,每辆车从中心车场出发给若干个城市配送,最终回到配送中心。

每个城市的需求量为demand(i),且demand(i)<CarLoad。记配送中心编号为0,

各城市编号为i=1,2,3……CityNum.各城市及配送中心之间的距离为distance。

求满足车辆最少,车辆行驶路程最短的运送方案。

算法流程

第一步:导入实际问题数据,根据城市数量进行编码

第二步:初始化种群并计算适应度值,这里的适应度值是车辆行驶的路径长度

第三步:选择适应度值高的染色体(个体,在粒子群里叫粒子)

第四步:对该染色体进行选择、交叉、变异、进化逆转操作得到新的种群

选择:从旧群体中以一定的概率选择个体到新群体中

交叉:采用部分映射杂交,确定交叉操作的父代,将父代样本两两分组

变异:变异策略采取随机选取两个点,将其对换位置

进化逆转:改善局部搜索能力,在上述操作后引进连续多次的进化逆转操作,这里的进化是指逆转算子的单方向性,即只有经逆转后,适应度值有提高的才接受下来,否则逆转无效。

第五步:重复上述迭代次数直至满足终止条件

第六步:解码得到最终结果,计算最后一代种群中每个粒子的适应度值,导出适应度值最小的路径。

特殊说明:

VRP问题算是TSP问题的进化版,不仅仅需要遍历所有城市,还需要考虑汽车的载重,城市的配送需求。

Matlab仿真结果:

遗传算法求解CVRP的仿真结果:

行驶距离随着迭代次数的变化曲线:

GA算法求解CVRP问题的配送路线图:

  • 16
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值