前言
带有约束的车辆路径问题( capacitated vehicle routing problem,CVRP) 是在标准车辆路径问题的基础上增加能力约束使模型更加符合现实生活中遇到的配送问题模型。CVRP 问题可以描述为:某配送中心用多辆相同汽车向有不同需求的客户配送货物,已知每个客户的位置、需求量以及汽车的容量,配送路径受车辆的容量、行驶路程等限制,需要合理安排车辆配送选择最佳车辆路径,使得总路程最短、总费用最小、配送总时间最短等。
一、提出假设
车辆路径问题( VRP) 一直都是 NP-hard 难题,对于这种多目标多约束的问题,其结果也是受到很多因素的影响,需要做出一定的假设,尽可能地减小不必要的因素对结果的影响,减少求解难度,使最终结果更加符合现实生活中的要求。
所做出的假设如下:
(1) 配送中心具有固定的车辆数且每辆车车型完全相同。
(2) 每辆车可以满足多个客户点的需求,而每个客户点只能被一辆车服务,在配送服务完成之后车辆要驶回车场。
(3) 假设车辆配送产生的成本与路径长度线性相关,每辆车固定成本相同。
(4) 每辆车载量有限,客户点的总需求量不得超过车队总装载量。
(5) 有且只有一个配送中心。
二、数学模型
1.CVRP优化模型
基于图论的表述方式,多目标优化VRP问题描述:在一个无向图G=(V, E)中,其中,V={0,1,…,n}为图中所有节点集合,0表示配送中心,V”={1,2,…,n}为顾客节点集合,E为任意两节点的边,E={(i,j)|i,j∈V,i≠j}表示边集,每条边的权重为cij(i,j∈V,i≠j)表示从顾客点i到顾客点j的配送运输距离。
设xijk定义如式(1):
x i j k = { 1 , 若车辆k访问顾客i后访问顾客j 0 , 否则 (1) x_{ijk}= \begin{cases}\tag{1}1, & \text {若车辆k访问顾客i后访问顾客j} \\ 0, & \text{否则} \end{cases} xijk={
1,0,若车辆k访问顾客i后访问顾客j否则(1)
则文本总结出的VRP的三个目标函数如式(2)
m i n Z 1 = ∑ k ∈ v ∑ i ∈ c ∑ j ∈ c D i j x i j k m i n Z 2 = ∑ k ∈ v ∑ j ∈ c x i j k m i n Z 3 = m a x k v ∑ i ∈ c ∑ j ∈ c D i j x i j k (2) \begin{array}{rl}\tag{2} minZ_1 & =\sum_{k\in{v}}\sum_{i\in{c}}\sum_{j\in{c}}D_{ij}x_{ijk} \\ minZ_2 & =\sum_{k\in{v}}\sum_{j\in{c}}x_{ijk} \\ minZ_3 & =max_k^v\sum_{i\in{c}}\sum_{j\in{c}}D_{ij}x_{ijk} \\ \end{array} minZ1minZ2minZ3=∑k∈v∑i∈c∑j∈cDijxijk=∑k∈v∑j∈cxijk=maxkv∑i∈c∑j∈cDijxijk(2)
约束条件为
∑ k ∈ v ∑ j ∈ c x i j k = 1 , ∀ i ∈ c (3) \tag{3}\sum_{k\in{v}}\sum_{j\in{c}}x_{ijk}=1,\forall{i}\in{c} k∈v∑