著名的Pascal之父——Nicklaus Wirth(沃斯)让他获得图灵奖的一句话就是他提出的著名公式:“程序=数据结构+算法”,这个公式对计算机科学的影响类似于爱因斯坦的质能方程在物理界的影响。
因此可以看出来数据结构和算法在我们开发程序中有多么的重要了,下面我们来简单认识下数据结构和算法…
1. 数据结构和算法介绍
数据结构介绍
数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率,对于程序来说选择一个好的数据结构可以为企业节省更多的成本。数据结构往往同高效的检索算法和索引技术有关。
常见的数据结构图所示:
算法介绍
在Java中,算法通常都是由类的方法来实现的。前面的数据结构,比如链表为啥插入、删除快,而查找慢,平衡的二叉树插入、删除、查找都快,这都是实现这些数据结构的算法所造成的。
算法简单来说就是解决问题的方案步骤。它能够对一定规范的输入,在有限时间内获得所要求的输出;一个算法的优劣可以用空间复杂度(算法需要消耗的内存空间)与时间复杂度(执行算法所需要的计算工作量)来衡量。
空间复杂度和时间复杂度越低代表算法越好,往往一个好的算法,可以大大提高我们解决问题的效率!
算法规定应该具有以下5个特征:
- 有穷性(Finiteness)
算法执行的步骤必须是有限的,如果是无限的那么算法就无法终止。
- 确切性(Definiteness)
算法的每一步骤必须有确切的定义;
- 输入项(Input)
一个算法开始需要有0个或多个输入,表示对象的初始条件,有了这个初始条件才能往下进行;
- 输出项(Output)
一个算法应该有一个或多个输出,它表示算法对数据处理后的结果。没有输出的算法是毫无意义的;
- 可行性(Effectiveness)
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成;
常见的算法如:递归法、穷举法、分治法、动态规划法、迭代法、回溯法等。
这篇文章我们主要讲的是递归算法
2. 递归算法
什么是递归?
递归是一种直接或间接地调用自身的算法。它通常把一个大型复杂的问题层层转化为一个个的较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量,简化了程序设计;
递归的条件
递归需要有结束条件(即要有边界条件),如果没有边界条件就变成了无限死循环。当递归不满足边界条件是会继续递归调用自身,直到满足边界条件为止;满足递归的要求需要是减小(有限)而不是发散(无限可能)。
递归弊端
非递归函数效率高,但较难编程,可读性较差。递归函数的缺点是增加了系统开销,也就是说,每递归一次,栈内存就多占用一截,并且占用的内存直到递归完成之后才能被回收,递归次数越多空间复杂度越高,甚至严重时会出现OutOfMemoryError内存溢出。
递归的流程
递归练习
①求1~100之间数值相加的和为?
②有一斐波那契数列数字,其规则如下: 1、1、2、3、5、8、13、21、34 (每一个数为前两个数之和),总结规律即f[n]=f[n-1]+f[n-2],求第30位数是多少?
③若一头小母牛,从出生起第四个年头开始每年生一头母牛,其生的小母牛也从第四个年头开始生每年生一头母牛,按此规律,第 n 年 时有多少头母牛?
④使用递归删除一个非空目录
总结
在开发中对于一些较难编程或者不确定循环次数下完成事件的情况下,这时候我们就可以考虑下递归的使用了,当然如果能够使用一两次循环完成的事也不需要使用递归算法,毕竟递归算法的空间复杂度还是很高的。