生产环境的性能难题

文章探讨了数据处理中的关键问题,如数据倾斜在GroupBy操作中的影响,以及如何通过两阶段去重来解决。同时,提到了动态工作负载再平衡技术以应对慢节点问题,并关注P99时延。资源隔离是另一个重要议题,因为查询、导入、压缩等任务间的资源竞争会影响性能。此外,并发控制和大查询的管理,以及查询重试策略也是优化数据处理的关键方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据倾斜

低基数 Group By + 高基数去重

两阶段去重:

SELECT day, COUNT(DISTINCT user_id)
FROM T
GROUP BY day

自动改写成

SELECT day, SUM(cnt)
FROM (
    SELECT day, COUNT(DISTINCT user_id) as cnt
    FROM T
    GROUP BY day, MOD(HASH_CODE(user_id), 1024)
)
GROUP BY day

慢节点

dynamic work rebalancing

https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow

P99 时延

资源隔离

查询,导入,Compaction, Schema Change, 统计信息收集,数据均衡 等多种任务资源相互影响

并发控制

大查询

查询重试策略

alt

本文由 mdnice 多平台发布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值