Apriori算法与FP-Tree算法

1.Apriori

https://www.cnblogs.com/pinard/p/6293298.html

Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了频繁出现的数据集,那么对于超市,我们可以优化产品的位置摆放,对于电商,我们可以优化商品所在的仓库位置,达到节约成本,增加经济效益的目的。下面我们就对Apriori算法做一个总结。

(1)原理

这里写图片描述
支持度来作为我们判断频繁项集的标准

(2)流程

输入:数据集合D,支持度阈值α
输出:最大的频繁k项集

    1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。

    2)挖掘频繁k项集

      a) 扫描数据计算候选频繁k项集的支持度

      b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。

      c) 基于频繁k项集,连接生成候选频繁k+1项集。

    3) 令k=k+1,转入步骤2。

    从算法的步骤可以看出,Aprior算法每轮迭代都要扫描数据集,因此在数据集很大,数据种类很多的时候,算法效率很低。

(3)总结

Aprior算法是一个非常经典的频繁项集的挖掘算法,很多算法都是基于Aprior算法而产生的,包括FP-Tree,GSP, CBA等。这些算法利用了Aprior算法的思想,但是对算法做了改进,数据挖掘效率更好一些,因此现在一般很少直接用Aprior算法来挖掘数据了,但是理解Aprior算法是理解其它Aprior类算法的前提,同时算法本身也不复杂,因此值得好好研究一番。

2.FP-Tree

https://www.cnblogs.com/zhengxingpeng/p/6679280.html

FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率。

(1)原理

项头表的建立—>FP Tree的建立—>FP Tree的挖掘
项头表的建立
引用块内容
FP Tree的建立
这里写图片描述
这里写图片描述
FP Tree的挖掘
引用块内容
得到F的频繁2项集为{A:2,F:2}, {C:2,F:2}, {E:2,F:2}, {B:2,F:2}。递归合并二项集,得到频繁三项集为{A:2,C:2,F:2},{A:2,E:2,F:2},…还有一些频繁三项集,就不写了。当然一直递归下去,最大的频繁项集为频繁5项集,为{A:2,C:2,E:2,B:2,F:2}
求出A,C,E,G,B,D,F的挖掘项,进行比较
得到了所有的频繁项集,如果我们只是要最大的频繁K项集,从上面的分析可以看到,最大的频繁项集为5项集。包括{A:2, C:2, E:2,B:2,F:2}。

(2)流程

1)扫描数据,得到所有频繁一项集的的计数。然后删除支持度低于阈值的项,将1项频繁集放入项头表,并按照支持度降序排列。
2)扫描数据,将读到的原始数据剔除非频繁1项集,并按照支持度降序排列。
3)读入排序后的数据集,插入FP树,插入时按照排序后的顺序,插入FP树中,排序靠前的节点是祖先节点,而靠后的是子孙节点。如果有共用的祖先,则对应的公用祖先节点计数加1。插入后,如果有新节点出现,则项头表对应的节点会通过节点链表链接上新节点。直到所有的数据都插入到FP树后,FP树的建立完成。
4)从项头表的底部项依次向上找到项头表项对应的条件模式基。从条件模式基递归挖掘得到项头表项项的频繁项集。
5)如果不限制频繁项集的项数,则返回步骤4所有的频繁项集,否则只返回满足项数要求的频繁项集。

(3)总结

FP Tree算法改进了Apriori算法的I/O瓶颈,巧妙的利用了树结构,这让我们想起了BIRCH聚类,BIRCH聚类也是巧妙的利用了树结构来提高算法运行速度。利用内存数据结构以空间换时间是常用的提高算法运行时间瓶颈的办法。
在实践中,FP Tree算法是可以用于生产环境的关联算法,而Apriori算法则做为先驱,起着关联算法指明灯的作用。除了FP Tree,像GSP,CBA之类的算法都是Apriori派系的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Apriori算法FP-Growth算法都是用于挖掘频繁项集的经典算法,它们的主要不同在于如何构建候选项集以及如何高效地发现频繁项集。 Apriori算法是一种基于迭代的算法,它通过自底向上的方法生成候选项集,然后逐一扫描数据集来计算每个候选项集的支持度,筛选出满足最小支持度要求的频繁项集。具体来说,Apriori算法通过使用先验知识来减少搜索空间,即假设任何出现频率较低的项集都不可能是频繁项集,从而减少计算的时间和空间复杂度。 相反,FP-Growth算法通过构建一种称为FP树的数据结构来高效地挖掘频繁项集,该算法首先通过扫描数据集来生成一个频繁模式基(即每个项出现的次数),然后构建FP树,其中每个路径表示一种频繁项集。然后使用树的节点链接来高效地查找频繁项集。这种方法避免了产生大量的候选项集,使得FP-Growth算法Apriori算法更加高效。 虽然这两种算法在实现上有很大的不同,但它们的目标都是找到频繁项集。FP-Growth算法可以看作是Apriori算法的优化版本,它通过构建FP树来减少搜索空间,提高算法的效率。因此,两种算法之间有很大的关联,实际应用中可以根据数据集的特点选择使用其中一种算法。 ### 回答2: Apriori算法FP-Growth算法都是数据挖掘领域中频繁项集挖掘的常用方法,它们的目标是从大规模数据集中找出频繁出现的项集。 Apriori算法是一种基于候选生成和验证的方法。它首先生成所有可能的频繁1项集,然后通过逐层迭代生成更高层的候选k项集,并利用候选项集的子集剪枝策略进行验证,判断生成的候选项集是否为频繁项集。Apriori算法的关键思想是利用Apriori原理,即一个项集是频繁项集,则它的所有子集也是频繁项集。 FP-Growth算法是一种基于树结构的方法。它首先构建一个FP树(频繁模式树),通过遍历数据集两次构建树结构。然后基于树结构递归地挖掘频繁项集。FP-Growth算法通过压缩数据集并建立一个树状结构,避免了Apriori算法的候选项集生成和验证的过程,大大提高了挖掘频繁项集的效率。 Apriori算法FP-Growth算法之间存在一定的关联。首先,它们都是用于频繁项集挖掘的算法,旨在找出数据集中经常出现的项集。其次,它们都需要进行两次数据集的遍历,一次用于构建候选项集或FP树,而另一次用于从候选项集或FP树中挖掘出频繁项集。然而,两者的核心不同之处在于,Apriori算法是基于候选项集的生成和验证,而FP-Growth算法则是通过构建FP树来压缩数据集,并基于树状结构进行频繁项集的挖掘。 总的来说,Apriori算法FP-Growth算法都是用于频繁项集挖掘的算法,但Apriori算法需要生成和验证大量的候选项集,而FP-Growth算法通过构建FP树来提高挖掘效率。选用哪种算法取决于具体的应用场景和数据集的规模。 ### 回答3: Apriori算法FP-Growth算法都是用于发现频繁项集的关联规则的数据挖掘算法Apriori算法是一种基于候选集和频繁集的生成算法。它的思想是由频繁(k-1)项集生成候选k项集,并通过扫描数据集统计出每个候选集的支持度,然后通过阈值来筛选出频繁项集。Apriori算法的核心操作是逐层生成频繁项集,但它在处理大规模数据时,需要多次扫描数据集,导致效率低下。 FP-Growth算法通过构建一棵FP树来发现频繁项集。它的思想是扫描数据集,统计出每个项的支持度,并将频繁项按照支持度降序排序。然后,利用排序后的频繁项集构建FP树,树的每个节点保存了对应项集的支持度,并通过链接节点的方式将相同项连接起来。根据FP树的特性,可以通过递归操作,从FP树中高效地获取频繁项集。FP-Growth算法只需要扫描数据集两次,避免了多次扫描的问题,因此在大规模数据上的效率明显高于Apriori算法Apriori算法FP-Growth算法之间存在一定的关联。Apriori算法可以看作是FP-Growth算法的变种,两种算法的目标都是发现频繁项集。Apriori算法是基于候选集和频繁集的生成过程,而FP-Growth算法则是基于构建FP树的方式。两种算法在处理小规模数据集上的效率相当,但FP-Growth算法在处理大规模数据时具有明显的优势。此外,FP-Growth算法还可以用于处理稀疏数据集,因为它只存储了频繁项及其支持度,不需要额外的存储空间。在实际应用中,可以根据数据集的大小和特点选择适合的算法来挖掘关联规则。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值