机器学习书目推荐
决策树的重要性和入门可以参考前面两篇文章:
在清华水木上有个Machine Learning的书单: http://www.newsmth.net/nForum/#!article/AI/34859
其中作为入门的几本书也不简单,都是经典的作品PRML或者是最新的著作(ML-APP),这些书在网上都能找到,不过找到不过不看放在硬盘里的话,其实这些书对你的用处并不大。
这些书都能在网上找到,我就不贴下载了,大家可以自行查找。
入门:
Pattern Recognition And Machine Learning
Author:hristopher M. Bishop
Machine Learning : A Probabilistic Perspective
Kevin P. Murphy
The Elements of Statistical Learning : Data Mining, Inference, and Prediction
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Information Theory, Inference and Learning Algorithms
David J. C. MacKay
All of Statistics : A Concise Course in Statistical Inference
Larry Wasserman
优化:
Convex Optimization
Stephen Boyd, Lieven Vandenberghe
Numerical Optimization
Jorge Nocedal, Stephen Wright
Optimization for Machine Learning
Suvrit Sra, Sebastian Nowozin, Stephen J. Wright
核方法:
Kernel Methods for Pattern Analysis
John Shawe-Taylor, Nello Cristianini
Learning with Kernels : Support Vector Machines, Regularization, Optimization, and Beyond
Bernhard Schlkopf, Alexander J. Smola
半监督:
Semi-Supervised Learning
Olivier Chapelle
高斯过程:
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
Carl Edward Rasmussen, Christopher K. I. Williams
概率图模型:
Graphical Models, Exponential Families, and Variational Inference
Martin J Wainwright, Michael I Jordan
Boosting:
Boosting : Foundations and Algorithms
Schapire, Robert E.; Freund, Yoav
贝叶斯:
Statistical Decision Theory and Bayesian Analysis
James O. Berger
The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation
Christian P. Robert
Bayesian Nonparametrics
Nils Lid Hjort, Chris Holmes, Peter Müller, Stephen G. Walker
Principles of Uncertainty
Joseph B. Kadane
Decision Theory : Principles and Approaches
Giovanni Parmigiani, Lurdes Inoue
蒙特卡洛:
Monte Carlo Strategies in Scientific Computing
Jun S. Liu
Monte Carlo Statistical Methods
Christian P.Robert, George Casella
信息几何:
Methods of Information Geometry
Shun-Ichi Amari, Hiroshi Nagaoka
Algebraic Geometry and Statistical Learning Theory
Watanabe, Sumio
Differential Geometry and Statistics
M.K. Murray, J.W. Rice
渐进收敛:
Asymptotic Statistics
A. W. van der Vaart
Empirical Processes in M-estimation
Geer, Sara A. van de
不推荐:
Statistical Learning Theory
Vladimir N. Vapnik
Bayesian Data Analysis, Second Edition
Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin
Probabilistic Graphical Models : Principles and Techniques
Daphne Koller, Nir Friedman
另外在微博上也有北美比较常用的机器学习/自然语言处理/语音处理经典书籍的推荐,其中的推荐面比较广,可以看下,和水木上的推荐有重叠。