机器学习书目推荐

机器学习书目推荐

 

 

决策树的重要性和入门可以参考前面两篇文章:

在清华水木上有个Machine Learning的书单: http://www.newsmth.net/nForum/#!article/AI/34859

 其中作为入门的几本书也不简单,都是经典的作品PRML或者是最新的著作(ML-APP),这些书在网上都能找到,不过找到不过不看放在硬盘里的话,其实这些书对你的用处并不大。

 这些书都能在网上找到,我就不贴下载了,大家可以自行查找。

 

入门: 

Pattern Recognition And Machine Learning                

Author:hristopher M. Bishop 

 

Machine Learning : A Probabilistic Perspective 

Kevin P. Murphy 
  

The Elements of Statistical Learning : Data Mining, Inference, and Prediction 

Trevor Hastie, Robert Tibshirani, Jerome Friedman  
  

Information Theory, Inference and Learning Algorithms 

David J. C. MacKay 
  

All of Statistics : A Concise Course in Statistical Inference 

Larry Wasserman  
  

优化: 

Convex Optimization 

Stephen Boyd, Lieven Vandenberghe 
  

Numerical Optimization  

Jorge Nocedal, Stephen Wright 
  

Optimization for Machine Learning 

Suvrit Sra, Sebastian Nowozin, Stephen J. Wright 
  

核方法: 

Kernel Methods for Pattern Analysis   

John Shawe-Taylor, Nello Cristianini 
  

Learning with Kernels : Support Vector Machines, Regularization, Optimization, and Beyond 

Bernhard Schlkopf, Alexander J. Smola 
  

半监督: 

Semi-Supervised Learning 

Olivier Chapelle 
  

高斯过程: 

Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)   

Carl Edward Rasmussen, Christopher K. I. Williams 
  

概率图模型:  

Graphical Models, Exponential Families, and Variational Inference   

Martin J Wainwright, Michael I Jordan 
  

Boosting: 

Boosting : Foundations and Algorithms  

Schapire, Robert E.; Freund, Yoav 
  

贝叶斯:   

Statistical Decision Theory and Bayesian Analysis  

James O. Berger  
  

The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation  

Christian P. Robert  
  

Bayesian Nonparametrics   

Nils Lid Hjort, Chris Holmes, Peter Müller, Stephen G. Walker 
  

Principles of Uncertainty  

Joseph B. Kadane  
  

Decision Theory : Principles and Approaches 

Giovanni Parmigiani, Lurdes Inoue 

  

蒙特卡洛: 

Monte Carlo Strategies in Scientific Computing 

Jun S. Liu 
  

Monte Carlo Statistical Methods 

Christian P.Robert, George Casella  
  

信息几何: 

Methods of Information Geometry  

Shun-Ichi Amari, Hiroshi Nagaoka 
  

Algebraic Geometry and Statistical Learning Theory 

Watanabe, Sumio  
  

Differential Geometry and Statistics 

M.K. Murray, J.W. Rice  
  

渐进收敛: 

Asymptotic Statistics 

A. W. van der Vaart  
  

Empirical Processes in M-estimation 

Geer, Sara A. van de  
  

不推荐:   

Statistical Learning Theory 

Vladimir N. Vapnik  
  

Bayesian Data Analysis, Second Edition 

Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin 
  

Probabilistic Graphical Models : Principles and Techniques 

Daphne Koller, Nir Friedman  

 

 

另外在微博上也有北美比较常用的机器学习/自然语言处理/语音处理经典书籍的推荐,其中的推荐面比较广,可以看下,和水木上的推荐有重叠。

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值