Clustering:Model-Based Algorithm

Clustering:Model-Based Algorithm

 

我们在前面学习过的Clustering算法模型有:

基于划分(Partitioning):K-Means及其扩展算法

基于层次(Hierarchical):Hierarchical Cluster算法

这两类算法能够在大多数常规数据空间中运行良好,但是其缺点也是比较明显。数据本身的特性,如欧式空间限制、初始值限制等,这些可以通过各种思路进行解决。现在有这么一些数据,其数据特性如下:

1:数据点在空间的密度不一致:

 

2:数据点在空间的分布形状不规则-非球形(Non-Globalar)

 

3:噪声影响

基于Partitioning、Hierarchical的Clustering算法在这些数据特征上表现不理想,如果认为通过增加簇的数目能解决这些问题的话请忽略这句话。对于这种情况,我们需要一种能够发现Density、Size、Outliar值的算法来解决这些问题,我们本次来学习基于空间数据Density来进行分簇的算法,这个实际上是基于Density-Model来进行分簇。

Please revise the paper:Accurate determination of bathymetric data in the shallow water zone over time and space is of increasing significance for navigation safety, monitoring of sea-level uplift, coastal areas management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustics measurements over coastal areas with high spatial and temporal resolution combined with extensive repetitive coverage. Numerous empirical SDB approaches in previous works are unsuitable for precision bathymetry mapping in various scenarios, owing to the assumption of homogeneous bottom over the whole region, as well as the limitations of constructing global mapping relationships between water depth and blue-green reflectance takes no account of various confounding factors of radiance attenuation such as turbidity. To address the assumption failure of uniform bottom conditions and imperfect consideration of influence factors on the performance of the SDB model, this work proposes a bottom-type adaptive-based SDB approach (BA-SDB) to obtain accurate depth estimation over different sediments. The bottom type can be adaptively segmented by clustering based on bottom reflectance. For each sediment category, a PSO-LightGBM algorithm for depth derivation considering multiple influencing factors is driven to adaptively select the optimal influence factors and model parameters simultaneously. Water turbidity features beyond the traditional impact factors are incorporated in these regression models. Compared with log-ratio, multi-band and classical machine learning methods, the new approach produced the most accurate results with RMSE value is 0.85 m, in terms of different sediments and water depths combined with in-situ observations of airborne laser bathymetry and multi-beam echo sounder.
02-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值