Clustering:Model-Based Algorithm
我们在前面学习过的Clustering算法模型有:
基于划分(Partitioning):K-Means及其扩展算法
基于层次(Hierarchical):Hierarchical Cluster算法
这两类算法能够在大多数常规数据空间中运行良好,但是其缺点也是比较明显。数据本身的特性,如欧式空间限制、初始值限制等,这些可以通过各种思路进行解决。现在有这么一些数据,其数据特性如下:
1:数据点在空间的密度不一致:
2:数据点在空间的分布形状不规则-非球形(Non-Globalar)
3:噪声影响
基于Partitioning、Hierarchical的Clustering算法在这些数据特征上表现不理想,如果认为通过增加簇的数目能解决这些问题的话请忽略这句话。对于这种情况,我们需要一种能够发现Density、Size、Outliar值的算法来解决这些问题,我们本次来学习基于空间数据Density来进行分簇的算法,这个实际上是基于Density-Model来进行分簇。