Clustering:Model-Based Algorithm

Clustering:Model-Based Algorithm

 

我们在前面学习过的Clustering算法模型有:

基于划分(Partitioning):K-Means及其扩展算法

基于层次(Hierarchical):Hierarchical Cluster算法

这两类算法能够在大多数常规数据空间中运行良好,但是其缺点也是比较明显。数据本身的特性,如欧式空间限制、初始值限制等,这些可以通过各种思路进行解决。现在有这么一些数据,其数据特性如下:

1:数据点在空间的密度不一致:

 

2:数据点在空间的分布形状不规则-非球形(Non-Globalar)

 

3:噪声影响

基于Partitioning、Hierarchical的Clustering算法在这些数据特征上表现不理想,如果认为通过增加簇的数目能解决这些问题的话请忽略这句话。对于这种情况,我们需要一种能够发现Density、Size、Outliar值的算法来解决这些问题,我们本次来学习基于空间数据Density来进行分簇的算法,这个实际上是基于Density-Model来进行分簇。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值