计算数组的小和
题目描述
数组小和的定义如下:
例如,数组s = [1, 3, 5, 2, 4, 6],在s[0]的左边小于或等于s[0]的数的和为0;在s[1]的左边小于或等于s[1]的数的和为1;在s[2]的左边小于或等于s[2]的数的和为1+3=4;在s[3]的左边小于或等于s[3]的数的和为1;
在s[4]的左边小于或等于s[4]的数的和为1+3+2=6;在s[5]的左边小于或等于s[5]的数的和为1+3+5+2+4=15。所以s的小和为0+1+4+1+6+15=27
给定一个数组s,实现函数返回s的小和
[要求]
时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度为 O ( n ) O(n) O(n)
输入描述:
第一行有一个整数N。表示数组长度
接下来一行N个整数表示数组内的数
输出描述:
一个整数表示答案
示例1
输入
6
1 3 5 2 4 6
输出
27
备注:
1
⩽
N
⩽
1
0
5
1 \leqslant N \leqslant 10^5
1⩽N⩽105
−
100
⩽
a
r
r
i
⩽
100
-100 \leqslant arr_i \leqslant 100
−100⩽arri⩽100
题解:
归并排序。此题让我们求的 ”小和“ 其实换个理解就是:对于每个元素 a[i] ,查看其右边有多少个元素比它大,那么它对最终的 “小和” 的贡献就是:a[i]*cnt。但是如果我们直接暴力去计数的话,复杂度 O ( n 2 ) O(n^2) O(n2),不太行。怎么办呢?
考虑两个非降序数组 a 和 b ,如果 a[i] <= b[j] ,那么 a[i] 不大于 b[j] 右边所有元素,此时我们可以知道在 b 数组中从 j 位置开始有多少个元素 大于等于 a[i] 了。回到题目上来,如果我们能这样做的话,计数就非常方便了,那题目就变成 归并排序 了,归并过程累加所有的和即可。
注意:结果会爆 int 。。。
代码:
#include <cstdio>
using namespace std;
const int N = 100010;
int n;
int a[N];
int b[N];
long long ret;
void merge( int l, int m, int r ) {
int i = l, j = m + 1;
int k = 0;
while ( i <= m && j <= r ) {
if ( a[i] <= a[j] ) {
ret += a[i] * ( r - j + 1 );
b[k++] = a[i++];
} else b[k++] = a[j++];
}
while ( i <= m ) b[k++] = a[i++];
while ( j <= r ) b[k++] = a[j++];
for ( int t = 0; t < k; ++t ) a[l+t] = b[t];
}
void mergesort( int l, int r ) {
if ( l >= r ) return;
int m = l + r >> 1;
mergesort( l, m );
mergesort( m + 1, r );
merge( l, m, r );
}
int main(void) {
scanf("%d", &n);
for ( int i = 0; i < n; ++i) scanf("%d", a + i);
mergesort( 0, n - 1 );
return 0 * printf("%lld\n", ret);
}