KMP算法

KMP算法

题目描述

给定两个字符串str和match,长度分别为N和M。实现一个算法,如果字符串str中含有子串match,则返回match在str中的开始位置,不含有则返回-1

若出现了多次,则按照升序输出所有出现位置

[要求]

时间复杂度为 O ( n ) O(n) O(n)

输入描述:

第一行一个字符串str
第二行一个字符串match

输出描述:

输出若干个数,分别为match在str中出现的位置,从0开始标号。
若不存在输出-1

示例1
输入
acbc
bc
输出
2
示例2
输入
acbc
bcc
输出
-1
示例3
输入
ababab
ab
输出
0 2 4
备注:

1 ⩽ l e n g t h ( s t r ) , l e n g t h ( m a t c h ) ⩽ 5 ∗ 1 0 5 1 \leqslant length(str),length(match) \leqslant 5∗10^5 1length(str),length(match)5105
保证字符集为小写字母


题解:

KMP 模板题,在理解 KMP 核心思想下,背模板即可,不然现场写这个算法还是有点难度。。。

代码:
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 500001;

char s[N], p[N];
int n, m;
int ne[N];

int main(void) {
    scanf("%s", s + 1);
    scanf("%s", p + 1);
    n = strlen( s + 1 );
    m = strlen( p + 1 );
    
    for ( int i = 2, j = 0; i <= m; ++i ) {
        while( j && p[i] != p[j + 1] ) j = ne[j];
        if ( p[i] == p[j + 1]) ++j;
        ne[i] = j;
    }
    
    bool flag = false;
    for ( int i = 1, j = 0; i <= n; ++i ) {
        while ( j && s[i] != p[j + 1] ) j = ne[j];
        if ( s[i] == p[j + 1] ) ++j;
        if ( j == m) {
            flag = true;
            printf("%d ", i - m);
            j = ne[j];
        }
    }
    if ( !flag ) printf("-1 ");
    return 0 * puts("");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值