Manacher算法进阶问题
题目描述
给定一个字符串str,想通过添加字符的方式使得str整体都变成回文字符串,但要求只能在str的末尾添加字符,请返回在str后面添加的最短字符串
[举例]
str = “abcd123321”,在必须包含最后一个字符的情况下,最长的回文子串是"123321",之前不是最长回文子串的部分是’abcd",所以末尾应该添加的部分就是"dcba"。
[要求]
如果str的长度为N,解决进阶问题的时间复杂度为 O ( N ) O(N) O(N)
保证输入数据无回文串
输入描述:
输入为一个字符串str
输出描述:
输出一个字符串。
示例1
输入
abcd123321
输出
dcba
说明
添加后的字符串为abcd123321dcba
示例2
输入
ababab
输出
a
备注:
设N表示输入字符串的长度
保证输入字符中只含有小写字母及数字
1
⩽
N
⩽
5
∗
1
0
5
1 \leqslant N \leqslant 5 * 10^5
1⩽N⩽5∗105
题解:
此题就是考察我们:必须包含最后一个字符的情况下,最长的回文子串是什么。
对 manacher 算法略加修改即可:
从左到右计算回文半径时,关注回文半径最右即将到达的位置,一旦发现已经到达最后的位置(字符串末尾),说明必须包含最后一个字符的最长回文半径已经找到,直接退出即可,所求结果为回文半径前的字符逆序。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 500001;
char s1[N];
char s2[N << 1];
int p[N << 1];
int manacher( int len ) {
len = len * 2 + 1;
int k = 0;
for ( int i = 0; i < len; ++i ) {
if ( i & 1 ) s2[i] = s1[k++];
else s2[i] = '#';
}
int r = -1, c = -1, ret = 0;
for ( int i = 0; i < len; ++i ) {
p[i] = r > i ? min( r - i, p[2 * c - i] ) : 1;
while ( i + p[i] < len && i - p[i] >= 0 ) {
if ( s2[i + p[i]] == s2[i - p[i]] ) ++p[i];
else break;
}
if ( i + p[i] > r ) {
r = i + p[i];
c = i;
}
if ( r == len ) {
ret = p[i] - 1;
break;
}
}
return ret;
}
int main(void) {
scanf("%s", s1);
int len = strlen( s1 );
int k = manacher( len );
for ( int i = len - k - 1; i >= 0; --i) putchar( s1[i] );
return 0;
}