子数组的最大异或和
题目描述
数组异或和的定义:把数组中所有的数异或起来得到的值。给定一个整型数组arr,其中可能有正、有负,有零,求其中子数组的最大异或和。
输入描述:
输出包含两行,第一行一个整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1 \leq n \leq 10^5) n(1≤n≤105),代表数组arr长度,第二个n个整数,代表数组 a r r ( − 1 0 9 ≤ a r r i ≤ 1 0 9 ) arr(-10^9 \leq arr_i \leq 10^9) arr(−109≤arri≤109)。
输出描述:
输出一个整数,代表其中子数组的最大异或和。
示例1
输入
4
3 -28 -29 2
输出
7
说明
{-28,-29}这个子数组的异或和为7,是所有子数组中最大的
备注:
时间复杂度 O ( n l o n g 2 n ) O O(nlong_2n)O O(nlong2n)O,额外空间复杂度 O ( n l o n g 2 n ) O(nlong_2n) O(nlong2n)。
题解:
这题有一个基础模型 最大异或对 ,思想就是将数字变成二进制插入到 Trie树 ,然后对二进制中的每一位数字,从高位开始尽可能的往相反方向走,这样获得的异或值才能尽可能的大。
回到这题,这题是求子数组的最大异或和,而数组的前缀异或和有这样一个规律:
设 x o r [ i ] = a [ 1 ] ⊕ a [ 2 ] ⊕ . . . ⊕ a [ i ] xor[i] = a[1] \oplus a[2] \oplus ... \oplus a[i] xor[i]=a[1]⊕a[2]⊕...⊕a[i] ,则子数组 a r r [ i . . j ] arr[i..j] arr[i..j] 的异或和为: x o r [ j ] ⊕ x o r [ i − 1 ] xor[j] \oplus xor[i-1] xor[j]⊕xor[i−1]
于是我们可以这样做:求以每个元素作为子数组结尾的子数组的最大异或和,通过将 x o r [ 1 ] , x o r [ 2 ] , . . . , x o r [ i − 1 ] xor[1], xor[2], ..., xor[i-1] xor[1],xor[2],...,xor[i−1] 分别插到 Trie 树中,然后查询 x o r [ i ] xor[i] xor[i] 与 Trie 树中的元素的最大异或值,此时就变成了上述 最大异或对 模型。
注意:从二进制的高位开始找相反方向涉及到贪心思想,因为越是高位不同,异或的结果更大。
这题有一个坑点:此题数字有正有负。。。假设我们把数字变成 32 位,这意味着我们必须考虑第 31 位符号位,负数往负数方向走,正数往正数方向走,这样才能保证异或值是尽可能的大,所以查询时需要先处理一下符号位。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100000;
const int M = N * 32 + 1;
int trie[M][2], idx;
void add( int x ) {
int p = 0;
for ( int i = 31; i >= 0; --i) {
int u = x >> i & 1;
int &t = trie[p][u];
if ( !t ) t = ++idx;
p = t;
}
}
int query( int x ) {
int ret = 0, p = 0;
int u = x >> 31 & 1;
if ( !trie[p][u] ) {
ret |= 1 << 31;
u ^= 1;
}
p = trie[p][u];
for ( int i = 30; i >= 0; --i ) {
u = x >> i & 1;
int &t = trie[p][u ^ 1];
if ( t ) {
ret |= 1 << i;
p = t;
} else p = trie[p][u];
}
return ret;
}
int main(void) {
int n, x;
int ret = 0, eor = 0;
scanf("%d", &n);
while ( n-- ) {
scanf("%d", &x);
eor ^= x;
ret = max( ret, query(eor) );
add( eor );
}
printf("%d\n", ret);
return 0;
}