子数组的最大异或和

子数组的最大异或和

题目描述

数组异或和的定义:把数组中所有的数异或起来得到的值。给定一个整型数组arr,其中可能有正、有负,有零,求其中子数组的最大异或和。

输入描述:

输出包含两行,第一行一个整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1 \leq n \leq 10^5) n(1n105),代表数组arr长度,第二个n个整数,代表数组 a r r ( − 1 0 9 ≤ a r r i ≤ 1 0 9 ) arr(-10^9 \leq arr_i \leq 10^9) arr(109arri109)

输出描述:

输出一个整数,代表其中子数组的最大异或和。

示例1
输入
4
3 -28 -29 2
输出
7
说明
{-28,-29}这个子数组的异或和为7,是所有子数组中最大的
备注:

时间复杂度 O ( n l o n g 2 n ) O O(nlong_2n)O O(nlong2n)O,额外空间复杂度 O ( n l o n g 2 n ) O(nlong_2n) O(nlong2n)


题解:

这题有一个基础模型 最大异或对 ,思想就是将数字变成二进制插入到 Trie树 ,然后对二进制中的每一位数字,从高位开始尽可能的往相反方向走,这样获得的异或值才能尽可能的大。

回到这题,这题是求子数组的最大异或和,而数组的前缀异或和有这样一个规律:

x o r [ i ] = a [ 1 ] ⊕ a [ 2 ] ⊕ . . . ⊕ a [ i ] xor[i] = a[1] \oplus a[2] \oplus ... \oplus a[i] xor[i]=a[1]a[2]...a[i] ,则子数组 a r r [ i . . j ] arr[i..j] arr[i..j] 的异或和为: x o r [ j ] ⊕ x o r [ i − 1 ] xor[j] \oplus xor[i-1] xor[j]xor[i1]

于是我们可以这样做:求以每个元素作为子数组结尾的子数组的最大异或和,通过将 x o r [ 1 ] , x o r [ 2 ] , . . . , x o r [ i − 1 ] xor[1], xor[2], ..., xor[i-1] xor[1],xor[2],...,xor[i1] 分别插到 Trie 树中,然后查询 x o r [ i ] xor[i] xor[i] 与 Trie 树中的元素的最大异或值,此时就变成了上述 最大异或对 模型。

注意:从二进制的高位开始找相反方向涉及到贪心思想,因为越是高位不同,异或的结果更大。

这题有一个坑点:此题数字有正有负。。。假设我们把数字变成 32 位,这意味着我们必须考虑第 31 位符号位,负数往负数方向走,正数往正数方向走,这样才能保证异或值是尽可能的大,所以查询时需要先处理一下符号位。

代码:
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 100000;
const int M = N * 32 + 1;

int trie[M][2], idx;

void add( int x ) {
    int p = 0;
    for ( int i = 31; i >= 0; --i) {
        int u = x >> i & 1;
        int &t = trie[p][u];
        if ( !t ) t = ++idx;
        p = t;
    }
}

int query( int x ) {
    int ret = 0, p = 0;
    int u = x >> 31 & 1;
    if ( !trie[p][u] ) {
        ret |= 1 << 31;
        u ^= 1;
    }
    p = trie[p][u];
    for ( int i = 30; i >= 0; --i ) {
        u = x >> i & 1;
        int &t = trie[p][u ^ 1];
        if ( t ) {
            ret |= 1 << i;
            p = t;
        } else p = trie[p][u];
    }
    return ret;
}

int main(void) {
    int n, x;
    int ret = 0, eor = 0;
    scanf("%d", &n);
    while ( n-- ) {
        scanf("%d", &x);
        eor ^= x;
        ret = max( ret, query(eor) );
        add( eor );
    }
    printf("%d\n", ret);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值