Face recognition-Loss Functions

Face recognition-Loss Functions


softmax
每个人为一类,总共n+1类。收敛后的网络可以用于提取待测试集合的人脸特征,再在该特征基础上训练分类器(SVM、联合贝叶斯、knn等), 缺陷是区分力度不够,受限于close-set,对于open-set的泛化性不够。一般的解决办法如deepid是网络只用作提取特征,后续再接一个特定任务的分类器。

triplet-loss(google-facenet)
构建过程:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor 
(记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative 
(记为x_n),由此构成一个(Anchor,PositiveNegative)三元组.
学习的目的即是:在一定的间隔alpha下,保证当前样本与同类样本之间的距离(distance_pos)与alpha之和小于其与非同类样本之间的距离(distance_neg)。
三元组的选择比较困难,如果暴力搜索查找整个集合里面的最近和最远样本,将非常耗时,且网络容易受不好的anchor影响不好训练,解决方式是在mini-batch里面进行选取。

contrasive-loss
类似与triplet的思想,增加类间距离,使得不同人脸更易于区分。

norm-softmax和L2-softmax
认为经过训练和测试所使用的特征不同态,训练的时候用的是embedding来度量距离,而测试的时候用的embeding的L2loss来度量,所以应该在训练的时候将输入softmax的特征L2化。

center-loss
triplet-loss和cotrasive-loss着重于解决类间区分性,center-loss认为类内的聚合性对于特征的映射学习也很重要,所以在embeding后将损失分为两个分支,其一是度量类间距离损失的softmax,其二是度量类内距离损失的center-loss.

sphere-loss
将softmax损失推广到流形空间,不再是在欧式空间度量样本间的距离。使得样本的区分性更强了。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值