使用数据结构栈来计算中缀表达式

栈的介绍:

  • 栈的英文为(stack)

  • 栈是一个先入后出(FILO-FirstIn LastOut)的有序列表。

  • 栈是限制线性表中元素的插入和删除只能在线性表的同一端进行的种特殊线性表。允许插入和删除的一端,为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)。

  • 根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除。

栈的应用场景:

  1. 子程序的调用:在跳往子程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。

  2. 处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数、区域变量等数据存入堆栈中。

  3. 表达式的转换[中缀表达式转后缀表达式]与求值(实际解决)。

  4. 二叉树的遍历。

  5. 图形的深度优先(depth- first)搜索法。

栈的快速入门:

  1. 用数组模拟栈的使用,由于栈是一种有序列表,当然可以使用数组的结构来储存栈的数据内容,下面我们就用数组模拟栈的出栈,入栈等操作。(还可以使用链表来模拟栈)
  2. 实现思路分析.并画出示意图

 

 

栈实现综合计算器(中缀表达式):

使用我们实现的栈来计算中缀表达式,思路分析,如下图所示:

 

特别需要注意的三点:

  • 我们需要考虑到多位数的运算,比如70*2-1。所以我们不仅需要判断当前字符是数字还是字符串,还需要判断下一个字符是不是数字,如果是数字,就需要进行拼接,如果是运算符,则入字符栈。

  • 在判断下一个字符的时候,需要判断当前字符是否是表达式的最后一个字符,否则会出现越界的异常,若为最后一个字符则直接入栈,不需要进行判断。

  • 在进行字符串优先级比较时,不能只比较一次,需要继续和字符栈顶的字符比较,当优先级大于栈顶字符时才加入,上图描述有错误。

    代码实现:

    栈的实现:
    //与之前创建的栈类有所不同,需要增加3个方法,比如判断当前字符是不是运算符,还需要对运算符的优先级进行比较
    class ArrayStack2 {
        private int top = -1;  //代表栈顶默认为-1
        private int maxSize; //栈的最大容量
        private int[] stack;  //使用数组来实现栈
    
        //构造器
        public ArrayStack2(int maxSize) {
            this.maxSize = maxSize;
            stack = new int[maxSize];  //对数组设置大小
        }
    
        //栈空
        public boolean isEmpty() {
            return top == -1;
        }
    
        //栈满
        public boolean isFull() {
            return top == maxSize - 1;
        }
    
        //添加元素,入栈
        public void push(int num) {
            //先判断栈是否已满
            if (isFull()) {
                System.out.println("栈已经满了,无法添加元素");
                return;
            }
            top++;
            stack[top] = num;
        }
    
        //遍历栈
        public void list() {
            //先判断栈是否为空
            if (isEmpty()) {
                System.out.println("栈为空");
                return;
            }
            for (int i = top; i >= 0; i--) {
                System.out.printf("stack[%d] = %d\n", i, stack[i]);
            }
        }
    
        //出栈--pop
        public int pop() {
            //先判断栈是否为空
            if (isEmpty()) {
                throw new RuntimeException("栈为空,没有数据");
            }
            int value = stack[top];
            top--;
            return value;
        }
    
        //获取栈顶的元素
        public char peek() {
            //先判断栈是否为空
            if (isEmpty()) {
                throw new RuntimeException("栈为空,没有数据");
            }
            return (char) stack[top];
        }
    
        //1.判断是不是一个运算符
        public boolean isOperator(char ch) {
            return ch == '+' || ch == '-' || ch == '*' || ch == '/';
        }
    
        //2.返回运算符的优先级, 优先级使用数字表示,数字越大,则优先级就越高.
        public int priority(char operator) {
            if (operator == '+' || operator == '-') {
                return 1;
            } else if (operator == '*' || operator == '/') {
                return 2;
            } else {
                return -1;
            }
        }
    
        //3.最后需要从数字栈和符号栈中取出元素进行计算
        public int cal(int num1, int num2, char operator) {
            int res = 0;
            switch (operator) {
                case '+':
                    res = num1 + num2;
                    break;
                case '-':
                    res = num2 - num1;  // 注意顺序
                    break;
                case '*':
                    res = num1 * num2;
                    break;
                case '/':
                    res = num2 / num1;
                    break;
                default:
                    break;
            }
            return res;
        }
    }
    计算中缀表达式:
    public class Calculator {
        public static void main(String[] args) {
            //测试能否计算一个中缀表达式
            String expression = "70+20*6-4";
            //需要两个栈,一个存放数字,一个存放字符
            ArrayStack2 numStack = new ArrayStack2(10);
            ArrayStack2 operatorStack = new ArrayStack2(10);
            //定义需要的相关变量
            int index = 0; //用来遍历表达式
            int num1;
            int num2;
            char operator;
            char ch;
            int res = 0;
            String keepNum = "";  //多位数的拼接
            //开始while循环的扫描expression
            while (index < expression.length()) {
                ch = expression.charAt(index);
                //判断ch 是数字还是字符
                if (operatorStack.isOperator(ch)) {
                    //是字符,先判断字符栈是否为空
                    if (operatorStack.isEmpty()) {
                        //字符栈为空,直接添加
                        operatorStack.push(ch);
                    } else {
                        //字符栈不为空,还需要判断字符栈栈顶的字符和当前要加入的字符的优先级
                        //如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
                        //在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈
                        // 然后需要再将运算符与字符栈顶的运算符来比较优先级
                        while (!operatorStack.isEmpty() && operatorStack.priority(ch) <= operatorStack.priority(operatorStack.peek())) {
                            num1 = numStack.pop();
                            num2 = numStack.pop();
                            operator = (char) operatorStack.pop();
                            res = numStack.cal(num1, num2, operator);
                            numStack.push(res);
                        }
                            //如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
                            operatorStack.push(ch);
                    }
                } else {
                    //是数字,直接添加到数字栈中
                    //numStack.push(ch - 48);
                    keepNum += ch;
                    //判断ch是否为expression的最后一位
                    if (index == expression.length() - 1) {
                        numStack.push(Integer.parseInt(keepNum));
                    } else {
                        if (operatorStack.isOperator(expression.charAt(index + 1))) {
                            //相当于keepNum会一直拼接到后一位为运算符,然后再入栈
                            numStack.push(Integer.parseInt(keepNum));
                            keepNum = "";  //需要将keepNum清空
                        }
                    }
                }
                index++;
            }
    
            //当表达式扫描完毕,就顺序的从数栈和符号栈中pop出相应的数和符号,并运行.
            //循环结束的条件为字符栈中没有运算符了
            while (!operatorStack.isEmpty()) {
                num1 = numStack.pop();
                num2 = numStack.pop();
                operator = (char) operatorStack.pop();
                res = numStack.cal(num1, num2, operator);
                numStack.push(res);
            }
            //将数栈的最后数,pop出,就是结果
            //int res2 = numStack.pop();
            System.out.printf("表达式%S计算出来的值为:%d", expression, res);
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值