- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍦 参考文章:Pytorch实战 | 第P4周:猴痘病识别
- 🍖 原作者:K同学啊 | 接辅导、项目定制
- 🚀 文章来源:K同学的学习圈子
本次采用的数据集为网络上下载的天气图像数据集,。
本人电脑配置
Python 3.8.0
Pytorch 1.8.1
torchvision 1.8.1+ cuda10.2
前期准备
1. 设置GPU/CPU
本次是在cpu上对网络进行训练和测试,同样需要先识别设备。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
2. 导入数据
下载数据到主目录的文件夹的week4data文件夹里,文件夹下为2类的子文件夹,每一个文件夹为一类,其中Monkeypox和others的样本分别有980和1162张图片。
在这里把每张图片resize到224*224,并对数据进行归一化。在划分训练集和测试集时比例为0.8:0.2。在对数据进行封装时依旧采用的是dataloader。
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib
from torch.optim.lr_scheduler import ReduceLROnPlateau
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
import os, PIL, random, pathlib
data_dir = 'week4data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print(classNames)
total_datadir = 'week4data/'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])
])
total_data = datasets.ImageFolder(total_datadir, transform = train_transforms)
# split the data
train_size = int(0.8*len(total_data))
test_size = len(total_data)-train_size
train_datasets, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_datasets,
batch_size = batch_size,
shuffle = True)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size = batch_size,
shuffle = True)
构建网络模型
1. 搭建模型
构建含有四层卷积的卷积神经网络,其中用到了batch normalization的操作,BN层一般位于激活函数前,可以保证激活单元的非线性表达能力,缓解梯度消失问题。
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
3. 编写训练函数
设置损失函数,这里采用的交叉熵损失函数,设置优化器为SGD优化,同时在其中加入了动量,也是为了防止过拟合。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Network_bn().to(device)
# setting hyperparameters
loss_fn = nn.CrossEntropyLoss()
learning_rate = 1e-2
opt = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.78)#add mommentum
scheduler=torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.95)
# train
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
train_loss += loss.item()
scheduler.step()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
4. 编写测试函数
当不进行训练时,停止梯度更新,节省计算内存消耗。
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, test_acc = 0, 0
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1)==target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
5. 主函数
设置迭代epoch次数,这里设定为100,并记录训练误差、精度,测试误差、精度。同时为了保存模型,选取训练过程中测试集上精度最大的模型进行保存。
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
结果总结
(1)采用原始网络进行训练得到的训练结果如下
训练过程如下
Epoch: 1, Train_acc:59.3%, Train_loss:0.686, Test_acc:69.7%,Test_loss:0.621
Epoch: 2, Train_acc:69.5%, Train_loss:0.594, Test_acc:61.8%,Test_loss:0.741
Epoch: 3, Train_acc:73.2%, Train_loss:0.548, Test_acc:71.3%,Test_loss:0.594
Epoch: 4, Train_acc:76.4%, Train_loss:0.495, Test_acc:73.7%,Test_loss:0.542
Epoch: 5, Train_acc:78.3%, Train_loss:0.473, Test_acc:75.3%,Test_loss:0.515
Epoch: 6, Train_acc:80.9%, Train_loss:0.440, Test_acc:75.8%,Test_loss:0.503
Epoch: 7, Train_acc:82.4%, Train_loss:0.419, Test_acc:77.6%,Test_loss:0.490
Epoch: 8, Train_acc:83.8%, Train_loss:0.399, Test_acc:77.9%,Test_loss:0.475
Epoch: 9, Train_acc:85.8%, Train_loss:0.375, Test_acc:78.8%,Test_loss:0.459
Epoch:10, Train_acc:86.7%, Train_loss:0.364, Test_acc:79.5%,Test_loss:0.463
Epoch:11, Train_acc:88.0%, Train_loss:0.348, Test_acc:76.9%,Test_loss:0.489
Epoch:12, Train_acc:87.9%, Train_loss:0.346, Test_acc:77.4%,Test_loss:0.482
Epoch:13, Train_acc:89.4%, Train_loss:0.325, Test_acc:78.8%,Test_loss:0.435
Epoch:14, Train_acc:89.5%, Train_loss:0.312, Test_acc:80.4%,Test_loss:0.420
Epoch:15, Train_acc:90.4%, Train_loss:0.298, Test_acc:82.3%,Test_loss:0.406
Epoch:16, Train_acc:90.9%, Train_loss:0.289, Test_acc:82.8%,Test_loss:0.406
Epoch:17, Train_acc:91.5%, Train_loss:0.281, Test_acc:81.1%,Test_loss:0.403
Epoch:18, Train_acc:90.6%, Train_loss:0.280, Test_acc:81.1%,Test_loss:0.409
Epoch:19, Train_acc:92.3%, Train_loss:0.265, Test_acc:82.8%,Test_loss:0.397
Epoch:20, Train_acc:92.5%, Train_loss:0.255, Test_acc:81.1%,Test_loss:0.413
(2)改变网络结构如下,并增加动量和学习率变化机制
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)#24*50*50
self.bn5 = nn.BatchNorm2d(24)
self.conv6 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)#48*50*50
self.bn6 = nn.BatchNorm2d(48)
self.conv7 = nn.Conv2d(in_channels=48, out_channels=48, kernel_size=3, stride=1, padding=1)#96*50*50
self.bn7 = nn.BatchNorm2d(48)
# self.fc1 = nn.Linear(24*50*50, len(classNames))
self.fc1 = nn.Linear(48*25*25, len(classNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = F.relu(self.bn6(self.conv6(x)))
x = F.relu(self.bn7(self.conv7(x)))
x = self.pool(x)
x = x.view(-1, 48*25*25)
x = self.fc1(x)
return x
opt = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.78)#add mommentum
scheduler=torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.8)
# train
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
train_loss += loss.item()
scheduler.step()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
得到的训练结果如下所示
每个epoch的精度和损失具体值如下,最终可以达到88%的精度。
Epoch:10, Train_acc:93.9%, Train_loss:0.167, Test_acc:87.4%,Test_loss:0.304
Epoch:11, Train_acc:95.6%, Train_loss:0.150, Test_acc:87.9%,Test_loss:0.314
Epoch:12, Train_acc:95.0%, Train_loss:0.155, Test_acc:87.9%,Test_loss:0.305
Epoch:13, Train_acc:95.0%, Train_loss:0.155, Test_acc:87.9%,Test_loss:0.312
Epoch:14, Train_acc:95.7%, Train_loss:0.147, Test_acc:88.3%,Test_loss:0.317
Epoch:15, Train_acc:95.9%, Train_loss:0.138, Test_acc:88.3%,Test_loss:0.297
Epoch:16, Train_acc:96.1%, Train_loss:0.139, Test_acc:88.6%,Test_loss:0.293
Epoch:17, Train_acc:95.6%, Train_loss:0.137, Test_acc:88.6%,Test_loss:0.324
Epoch:18, Train_acc:96.1%, Train_loss:0.147, Test_acc:87.9%,Test_loss:0.317
Epoch:19, Train_acc:96.6%, Train_loss:0.131, Test_acc:88.6%,Test_loss:0.307
Epoch:20, Train_acc:96.0%, Train_loss:0.136, Test_acc:88.1%,Test_loss:0.299
。。。
Epoch:40, Train_acc:96.1%, Train_loss:0.134, Test_acc:87.9%,Test_loss:0.303
Epoch:41, Train_acc:96.1%, Train_loss:0.133, Test_acc:89.0%,Test_loss:0.303
Epoch:42, Train_acc:96.7%, Train_loss:0.137, Test_acc:88.1%,Test_loss:0.309
Epoch:43, Train_acc:96.1%, Train_loss:0.137, Test_acc:88.1%,Test_loss:0.308
Epoch:44, Train_acc:96.1%, Train_loss:0.130, Test_acc:88.1%,Test_loss:0.305
Epoch:45, Train_acc:96.1%, Train_loss:0.136, Test_acc:88.3%,Test_loss:0.305
Epoch:46, Train_acc:96.5%, Train_loss:0.130, Test_acc:88.1%,Test_loss:0.312
Epoch:47, Train_acc:95.8%, Train_loss:0.137, Test_acc:87.6%,Test_loss:0.299
Epoch:48, Train_acc:96.0%, Train_loss:0.137, Test_acc:89.3%,Test_loss:0.302
Epoch:49, Train_acc:95.4%, Train_loss:0.139, Test_acc:88.3%,Test_loss:0.295
Epoch:50, Train_acc:96.8%, Train_loss:0.129, Test_acc:88.3%,Test_loss:0.301
加载训练模型并测试任意一张图片
采用原始网络训练得到的模型进行测试,测试代码如下
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib
from torch.optim.lr_scheduler import ReduceLROnPlateau
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
import os, PIL, random, pathlib
data_dir = 'week4data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print(classNames)
total_datadir = 'week4data/'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])
])
total_data = datasets.ImageFolder(total_datadir, transform = train_transforms)
# # split the data
# train_size = int(0.8*len(total_data))
# test_size = len(total_data)-train_size
# train_datasets, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
# batch_size = 32
# train_dl = torch.utils.data.DataLoader(train_datasets,
# batch_size = batch_size,
# shuffle = True)
# test_dl = torch.utils.data.DataLoader(test_dataset,
# batch_size = batch_size,
# shuffle = True)
# construct the network
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)#24*50*50
self.bn5 = nn.BatchNorm2d(24)
# self.conv6 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)#48*50*50
# self.bn6 = nn.BatchNorm2d(48)
# self.conv7 = nn.Conv2d(in_channels=48, out_channels=48, kernel_size=3, stride=1, padding=1)#96*50*50
# self.bn7 = nn.BatchNorm2d(48)
self.fc1 = nn.Linear(24*50*50, len(classNames))
# self.fc1 = nn.Linear(48*25*25, len(classNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
# x = F.relu(self.bn6(self.conv6(x)))
# x = F.relu(self.bn7(self.conv7(x)))
# x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Network_bn().to(device)
# setting hyperparameters
loss_fn = nn.CrossEntropyLoss()
learning_rate = 1e-4
opt = torch.optim.SGD(model.parameters(), lr=learning_rate)#add mommentum
# train
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, test_acc = 0, 0
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1)==target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Network_bn().to(device)
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
test_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])
])
if __name__ == '__main__':
image_path = 'week4data/Monkeypox/M01_01_00.jpg'
# 模型保存
PATH = './model_p4.pth' # 保存的参数文件名
# torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
predict_one_image(image_path, model, test_transforms, classNames)
加载训练集中的第一张图片进行测试,得到正确结果为预测结果是:Monkeypox,图片示例如下
从网上下载图片进行测试,得到的结果为预测结果是:Others