Slim下的函数介绍(一)

1、slim.conv2d:二维卷积

2、slim.nets.resnet_utils.conv2d_same():使用“SAME”填充的二维卷积

3、 tf.variable_scope()的original_name_scope 和 name的区别:

4、slim.utils.collect_named_outputs(collections, alias, outputs):为output的tensor添加别名,并将tensor添加到collections的列表中

5、slim.separable_conv2d():实现深度可分离卷积

6、slim.learning.train():开始训练

7、slim.evaluation.evaluation_loop():对模型的预测结果进行评估

8、slim.get_variables_to_restore(include=None, exclude=None):

9、slim.assign_from_checkpoint_fn():

10、tf.contrib.metrics.aggregate_metric_map():

11、Slim.conv2d_transpose():实现反卷积

12、slim.batch_norm():实现批量归一化

13、slim.max_pool2d()、slim.avg_pool2d():实现最大或者均值池化:


参考源码https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py


1、slim.conv2d:二维卷积

  函数原型:

convolution(inputs,
          num_outputs,
          kernel_size,
          stride=1,
          padding='SAME',
          data_format=None,
          rate=1,
          activation_fn=nn.relu,
          normalizer_fn=None,
          normalizer_params=None,
          weights_initializer=initializers.xavier_initializer(),
          weights_regularizer=None,
          biases_initializer=init_ops.zeros_initializer(),
          biases_regularizer=None,
          reuse=None,
          variables_collections=None,
          outputs_collections=None,
          trainable=True,
          scope=None):

参数介绍:

    inputs:指需要做卷积的输入图像
    num_outputs:指定卷积核的个数(就是filter的个数)
    kernel_size:N个正整数的序列,指定卷积核的空间维度。 可以是单个整数,则所有空间维度具有相同值。
    stride:一组N个正整数,指定计算输出的stride。 可以是一个整数,则所有空间维具有相同的值。指定任何stride!= 1与指定任何rate!= 1不相容。
    padding:为padding的方式选择,VALID或者SAME
    data_format:是用于指定输入的input的格式
    rate:N个正整数的序列,指定用于萎缩卷积的扩张率。 可以是单个整数,以指定所有空间维度的相同值。 指定任何rate!= 1与指定任何stride!= 1不兼容。
    activation_fn:用于激活函数的指定,默认的为ReLU函数
    normalizer_fn:用于指定正则化函数
    normalizer_params:用于指定正则化函数的参数
    weights_initializer:用于指定权重的初始化程序
    weights_regularizer:为权重可选的正则化程序
    biases_initializer:用于指定biase的初始化程序
    biases_regularizer: biases可选的正则化程序
    reuse:指定是否共享层或者和变量
    variable_collections:指定变量的集合列表或者字典名,变量(weight、biase)会被添加到这个集合中。
    outputs_collections:指定一个列表名,输出(output)会被添加到这个列表。这个(列表名,[output])的键值对位于Graph类的self._collection字典中,如果该字典中没有列表名的关键字,则(列表名,[output])会被创建。
    trainable::卷积层的参数是否可被训练,如果为True,则同样会将变量添加到计算图集合GraphKeys.TRAINABLE_VARIABLES中 
    scope:共享变量所指的variable_scope

2、slim.nets.resnet_utils.conv2d_same():使用“SAME”填充的二维卷积

  函数原型:conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None)
    inputs: 一个4维tensor:[batch, height_in, width_in, channels].
    num_outputs:卷积核的个数
    kernel_size: 卷积核的尺寸
    stride: 输出的stride
    rate: 空洞卷积膨胀率
    scope: Scope.

net = conv2d_same(inputs, num_outputs, 3, stride=stride)
# 等价于
net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME')
net = subsample(net, factor=stride)
# 但是和net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME')不等价,因为当输入的高度
或宽度是偶数时,它是不同的,这就是我们添加当前函数的原因。

# subsample的源码为:
def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.
  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.
  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)

3、 tf.variable_scope()的original_name_scope 和 name的区别:

with tf.variable_scope('a') as a:
    print(a.name)
    print(a.original_name_scope)
    print(a.original_name_scope)

with tf.variable_scope('a') as b:
    print(b.name)
    print(b.original_name_scope)

输出:
a
a/
a/
a
a_1/

    foo.name返回scope的名称(String)。 另一方面,foo.original_name_scope返回与foo.name相同的字符串,除非相同的scope被重新创建。 在这种情况下,所有子范围都会根据需要附加一个_#,以便对foo.original_name_scope进行所有调用,为范围的每个实例返回唯一的内容。

4、slim.utils.collect_named_outputs(collections, alias, outputs):为output的tensor添加别名,并将tensor添加到collections的列表中

    如果这个(列表名,列表)键值对存在于Graph的self._collection字典中,则只是在列表上添加,否则会在字典中创建键值对。源码如下:  

def collect_named_outputs(collections, alias, outputs):
  if collections:
    append_tensor_alias(outputs, alias)
    # 将outputs添加到collections的列表中,这个(collections,[outputs])位于Graph的self._collection中
    ops.add_to_collections(collections, outputs)
  return outputs

def append_tensor_alias(tensor, alias):
  if alias[-1] == '/':
    alias = alias[:-1]
  if hasattr(tensor, 'aliases'):
    tensor.aliases.append(alias)
  else:
    tensor.aliases = [alias]
  return tensor

5、slim.separable_conv2d():实现深度可分离卷积

def separable_convolution2d(
    inputs,
    num_outputs,
    kernel_size,
    depth_multiplier=1,
    stride=1,
    padding='SAME',
    data_format=DATA_FORMAT_NHWC,
    rate=1,
    activation_fn=nn.relu,
    normalizer_fn=None,
    normalizer_params=None,
    weights_initializer=initializers.xavier_initializer(),
    pointwise_initializer=None,
    weights_regularizer=None,
    biases_initializer=init_ops.zeros_initializer(),
    biases_regularizer=None,
    reuse=None,
    variables_collections=None,
    outputs_collections=None,
    trainable=True,
    scope=None):
  """一个2维的可分离卷积,可以选择是否增加BN层。
  这个操作首先执行逐通道的卷积(每个通道分别执行卷积),创建一个称为depthwise_weights的变量。如果num_outputs
不为空,它将增加一个pointwise的卷积(混合通道间的信息),创建一个称为pointwise_weights的变量。如果
normalizer_fn为空,它将给结果加上一个偏置,并且创建一个为biases的变量,如果不为空,那么归一化函数将被调用。
最后再调用一个激活函数然后得到最终的结果。
  Args:
    inputs: 一个形状为[batch_size, height, width, channels]的tensor
    num_outputs: pointwise 卷积的卷积核个数,如果为空,将跳过pointwise卷积的步骤.
    kernel_size: 卷积核的尺寸:[kernel_height, kernel_width],如果两个的值相同,则可以为一个整数。
    depth_multiplier: 卷积乘子,即每个输入通道经过卷积后的输出通道数。总共的输出通道数将为:
num_filters_in * depth_multiplier。
    stride:卷积步长,[stride_height, stride_width],如果两个值相同的话,为一个整数值。
    padding:  填充方式,'VALID' 或者 'SAME'.
    data_format:数据格式, `NHWC` (默认) 和 `NCHW` 
    rate: 空洞卷积的膨胀率:[rate_height, rate_width],如果两个值相同的话,可以为整数值。如果这两个值
任意一个大于1,那么stride的值必须为1.     
    activation_fn: 激活函数,默认为ReLU。如果设置为None,将跳过。
    normalizer_fn: 归一化函数,用来替代biase。如果归一化函数不为空,那么biases_initializer
和biases_regularizer将被忽略。 biases将不会被创建。如果设为None,将不会有归一化。
    normalizer_params: 归一化函数的参数。
    weights_initializer: depthwise卷积的权重初始化器
    pointwise_initializer: pointwise卷积的权重初始化器。如果设为None,将使用weights_initializer。
    weights_regularizer: (可选)权重正则化器。
    biases_initializer: 偏置初始化器,如果为None,将跳过偏置。
    biases_regularizer: (可选)偏置正则化器。
    reuse: 网络层和它的变量是否可以被重用,为了重用,网络层的scope必须被提供。
    variables_collections: (可选)所有变量的collection列表,或者是一个关键字为变量值为collection的字典。
    outputs_collections: 输出被添加的collection.
    trainable: 变量是否可以被训练
    scope: (可选)变量的命名空间。
  Returns:
    代表这个操作的输出的一个tensor

6、slim.learning.train():开始训练

    slim.learning.train()的源码如下:

_USE_DEFAULT=0
def train(train_op,
          logdir,
          train_step_fn=train_step,
          train_step_kwargs=_USE_DEFAULT,
          log_every_n_steps=1,
          graph=None,
          master='',
          is_chief=True,
          global_step=None,
          number_of_steps=None,
          init_op=_USE_DEFAULT,
          init_feed_dict=None,
          local_init_op=_USE_DEFAULT,
          init_fn=None,
          ready_op=_USE_DEFAULT,
          summary_op=_USE_DEFAULT,
          save_summaries_secs=600,
          summary_writer=_USE_DEFAULT,
          startup_delay_steps=0,
          saver=None,
          save_interval_secs=600,
          sync_optimizer=None,
          session_config=None,
          session_wrapper=None,
          trace_every_n_steps=None,
          ignore_live_threads=False):
  """
  使用TensorFlow 的监督器(supervisor)来运行训练循环。 提供sync_optimizer时,讲同步进行梯度更新,否则将异步进行梯度更新。
  args:
    train_op: 这是一个`Tensor`,当被执行的时候,将进行梯度更新并返回损失值。,
    logdir: 训练损失(trian loss)写入的目录。
    train_step_fn: 为了执行单次梯度跟新操作,这个函数将会被调用。这个函数必须有四个参数:session、train_op、 global step、dictionary.
    train_step_kwargs: 传给train_step_fn的一个dictionary,默认情况下,两个叫做"should_stop" 和"should_log"的布尔值需要提供。
    log_every_n_steps: 多少次迭代保存一次训练损失。
    graph: 传递给监督其supervisor的图,如果为空,则使用默认的graph。
    master: tensorflow master的地址
    is_chief: 指定是否在主要副本上运行training。
    global_step: 代表全局step的tensor,如果为空,那么将会调用training_util.get_or_create_global_step(), 
    number_of_steps: 训练时最大的梯度更新次数,当global step大于这个值时,停止训练。如果这个值为空,则训练不会停止下来。
    init_op: 初始化操作,如果为空,则调用tf.global_variables_initializer()初始化
    init_feed_dict: 当执行初始化操作时的需要feed进去的一个字典
    local_init_op: 局部初始化操作,如果为空,则调用tf.local_variables_initializer()和 tf.tables_initializer()来初始化
    init_fn: 在Init_op被执行后,一个可选的调用函数。这个函数需要接受一个参数,即被初始化的session。
    ready_op: 检查模型是否准备好了的操作,如果为空,将会调用tf.report_uninitialized_variables()。
    summary_op: summary操作。
    save_summaries_secs: 多少秒保存一次summaries。
    summary_writer: 一个SummaryWriter,如果为None,则不会又summary会被写入。如果没有设置该值,将会自动创建一个SummaryWriter。
    startup_delay_steps: 在梯度更新之前需要等待的step数。如果sync_optimizer被提供,则这个值必须为0.
    saver: 保存checkpoint文件的saver,如果为None,一个默认的saver将会被创建。
    save_interval_secs: 多少秒保存一次模型的checkpoint文件到logdir。
    sync_optimizer: tf.train.SyncReplicasOptimizer的一个实例,或者这个实例的一个列表。如果这个参数被更新,则梯度更新操作将同步进行。如果为None,则梯度更新操作将异步进行。
    session_config: tf.ConfigProto的一个实例,用于配置Session,如果为None,则将会创建一个默认值。
    session_wrapper: 会话包装器,它把tf.Session作为唯一的参数传入,返回一个和tf.Session具有相同方法的包装后的session。如果不为None,则包装后的对象将会在训练中使用。
    trace_every_n_steps: 以一种Chrome trace format生成并保存Timeline 保存的频率为trace_every_n_steps,如果为None, 没有任何trace信息将会别保存。
    ignore_live_threads: 如果为True,则忽略那些在停止supervisor之后仍然在运行的线程,而不是引发RuntimeError。
  Returns:
    训练后的损失函数的值 
'''

7、slim.evaluation.evaluation_loop():对模型的预测结果进行评估

    slim.evaluation.evalutation_loop()的源码如下:    

  通常,如果我们想要评估一个保存在磁盘上的模型的checkpoint文件时,可以在一个机制集合上进行单次或者多次评估。为了评估一个特定的模型,我们需要定义0或者更多metric和0或者更多summary,然后调用evaluation_loop。
  # 创建模型并获取预测值:
  images, labels = LoadData(...)
  predictions = MyModel(images)
  # 选择需要计算的评估指标
  names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
      "accuracy": slim.metrics.accuracy(predictions, labels),
      "mse": slim.metrics.mean_squared_error(predictions, labels),
  })
  # 定义需要写入的summary
  for metric_name, metric_value in metrics_to_values.iteritems():
    tf.summary.scalar(metric_name, metric_value)
  checkpoint_dir = '/tmp/my_model_dir/'
  log_dir = '/tmp/my_model_eval/'
  # 评估1000个batch
  num_evals = 1000
  # 每10分钟评估一次
  slim.evaluation_loop(
      '',
      checkpoint_dir,
      logdir,
      num_evals=num_evals,
      eval_op=names_to_updates.values(),
      summary_op=tf.contrib.deprecated.merge_summary(summary_ops),
      eval_interval_secs=600)

def evaluation_loop(master,
                    checkpoint_dir,
                    logdir,
                    num_evals=1,
                    initial_op=None,
                    initial_op_feed_dict=None,
                    init_fn=None,
                    eval_op=None,
                    eval_op_feed_dict=None,
                    final_op=None,
                    final_op_feed_dict=None,
                    summary_op=_USE_DEFAULT,
                    summary_op_feed_dict=None,
                    variables_to_restore=None,
                    eval_interval_secs=60,
                    max_number_of_evaluations=None,
                    session_config=None,
                    timeout=None,
                    timeout_fn=None,
                    hooks=None):
  """返回Slim的评估循环
  Args:
    master:TensorFlow master的BNS地址 
    checkpoint_dir: checkpoint文件所在的目录
    logdir: summaries被写入的目录。
    num_evals: 运行eval_op的次数,通常num_eval=num_batch
    initial_op: 初始化操作,在evaluation之前运行
    initial_op_feed_dict: 当执行初始化操作时的feed dictionary 
    init_fn: (可选)一个回调函数,在初始化被调用之后执行。这个回调函数必须接受一个参数,即初始化的session。
    eval_op: 一个评估操作,总共需要运行num_evals次,即每个batch运行一次
    eval_op_feed_dict: 当执行eval_op时所要用的feed dictionary
    final_op: 一个最终操作,在所有的eval_op被执行完以后执行,final_op的值被返回
    final_op_feed_dict: 当执行final_op时的一个feed dictionary
    summary_op: 在运行slim的metric操作后的评估的summary_op,默认情况下,summary_op被设置为tf.summary.merge_all().
    summary_op_feed_dict: (可选)当运行summary_op时的一个feed dictionary
    variables_to_restore: 在评估期间需要恢复的变量列表,如果为None,那么默认为slim.variables.GetVariablesToRestore() 
    eval_interval_secs: 两次评估之间的间隔(单位/秒),即多久evaluation一次
    max_number_of_evaluations: 评估迭代的最大次数,如果这个值设置为None,那么评估将无限进行。
    session_config: 一个tf.ConfigProto的实例,如果为None,则默认的将会别使用。
    timeout: 超时时间, The maximum amount of time to wait between checkpoints.如果为None,那么程序将一直等待。 
    timeout_fn: (可选)在超时之后被调用的函数。如果这个函数返回True,那么意味着没有新的checkpoint文件会被创建,迭代将会被终止,这个函数被调用时没有任何参数。
    hooks: 一个额外的SessionRunHook对象的列表,在重复的评估时被传入 
  Returns:
    如果final_op不为空的话返回final_op执行后的值,如果final_op为空的话,则返回None。
  """
  if summary_op == _USE_DEFAULT:
    summary_op = summary.merge_all()
  all_hooks = [evaluation.StopAfterNEvalsHook(num_evals),]
  if summary_op is not None:
    all_hooks.append(evaluation.SummaryAtEndHook(
        log_dir=logdir, summary_op=summary_op, feed_dict=summary_op_feed_dict))
  if hooks is not None:
    # Add custom hooks if provided.
    all_hooks.extend(hooks)
  saver = None
  if variables_to_restore is not None:
    saver = tf_saver.Saver(variables_to_restore)

  return evaluation.evaluate_repeatedly(
      checkpoint_dir,
      master=master,
      scaffold=monitored_session.Scaffold(
          init_op=initial_op, init_feed_dict=initial_op_feed_dict,
          init_fn=init_fn, saver=saver),
      eval_ops=eval_op,
      feed_dict=eval_op_feed_dict,
      final_ops=final_op,
      final_ops_feed_dict=final_op_feed_dict,
      eval_interval_secs=eval_interval_secs,
      hooks=all_hooks,
      config=session_config,
      max_number_of_evaluations=max_number_of_evaluations,
      timeout=timeout,
      timeout_fn=timeout_fn)

8、slim.get_variables_to_restore(include=None, exclude=None):

  获取所有变量,包括模型变量(如权重和参数)和常规变量(如global step),可以传入scope进行过滤,源码如下

def get_variables_to_restore(include=None, exclude=None):
  """Gets the list of the variables to restore.
  Args:
    include:一个可选的scope的列表或者元组,用来过滤来自VARIABLES collection中的变量。如果为None,则包含所有的变量。 
    exclude: 一个可选的scope的列表或者元组,用来用来过滤来自VARIABLES collection中的变量。如果为None,则过滤掉所有的变量。
  Returns:
    变量列表
  """
  if include is None:
    # 包含所有变量,包括model_variable和regular_variable
    vars_to_include = get_variables()
  else:
    if not isinstance(include, (list, tuple)):
      raise TypeError('include is provided but is not a list or a tuple.')
    vars_to_include = []
    for scope in include:
      vars_to_include += get_variables(scope)
  vars_to_exclude = set()
  if exclude is not None:
    if not isinstance(exclude, (list, tuple)):
      raise TypeError('exclude is provided but is not a list or a tuple.')
    for scope in exclude:
      vars_to_exclude |= set(get_variables(scope))
  # Exclude the variables in vars_to_exclude
  return [v for v in vars_to_include if v not in vars_to_exclude]

9、slim.assign_from_checkpoint_fn():

     返回一个函数,它从checkpoint文件读取变量值并分配给给特定变量。如果ignore_missing_vars为True,并且在检查点中找不到变量,则返回None。函数的源码如下

def assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False,
                              reshape_variables=False):
  """
  Args:
    model_path: 模型的checkpoint文件的绝对路径。为了得到最新的checkpoint文件,可以使用:model_path = tf.train.latest_checkpoint(checkpoint_dir)
    var_list: A list of `Variable` objects or a dictionary mapping names in the
        checkpoint to the corresponding variables to initialize. If empty or
        `None`, it would return `no_op(), None`.
    ignore_missing_vars: Bool型,如果为True,它将忽略在checkpoint文件中缺失的那些变量,。
    reshape_variables: Bool型, 如果为真,那么那些与checkpoint文件中的变量有不同形状的变量将会自动被reshape。
  Returns:
    一个只需要一个参数(tf.Session)函数,它作用是进行赋值操作。如果在checkpoint文件中没有找到任何匹配的变量,那么将会返回None

  """
  if not var_list:
    raise ValueError('var_list cannot be empty')
  if ignore_missing_vars:
    reader = pywrap_tensorflow.NewCheckpointReader(model_path)
    if isinstance(var_list, dict):
      var_dict = var_list
    else:
      var_dict = {var.op.name: var for var in var_list}
    available_vars = {}
    for var in var_dict:
      if reader.has_tensor(var):
        available_vars[var] = var_dict[var]
      else:
        logging.warning(
            'Variable %s missing in checkpoint %s', var, model_path)
    var_list = available_vars
  if var_list:
    saver = tf_saver.Saver(var_list, reshape=reshape_variables)
    def callback(session):
      saver.restore(session, model_path)
    return callback
  else:
    logging.warning('No Variables to restore')
    return None

10、tf.contrib.metrics.aggregate_metric_map():

    将{metric_name:(value_tensor, update_op)}的字典转为两个字典:{metric_name:value_tensor}和{metric_name:update_op},其中(value_tensor, update_op)由tf.metric.xxx函数产生。当metric列表的长度很长的话,将metric_name和与之相关的value_tensor和update_op配对是非常有效的。   

Args:
  names_to_tuples: 一个metric_name到tuples的映射。每个tuple包含metric数据流的键值对:(value_tensor, update_op) 

Returns:
  返回两个字典,一个是包含metric_name到value_tensor的映射,另一个包含metric_name到update_op的映射。

Example:
metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({
      'Mean Absolute Error': new_slim.metrics.streaming_mean_absolute_error(
          predictions, labels, weights),
      'Mean Relative Error': new_slim.metrics.streaming_mean_relative_error(
          predictions, labels, labels, weights),
      'RMSE Linear': new_slim.metrics.streaming_root_mean_squared_error(
          predictions, labels, weights),
      'RMSE Log': new_slim.metrics.streaming_root_mean_squared_error(
          predictions, labels, weights),
  })

11、Slim.conv2d_transpose():实现反卷积

   这里反卷积的输出需要根据stride和padding方式进行计算。假设反卷积输入为 [x,x] , 输出为 [y,y],当padding为SAME时,y = x * stride ;当padding为VALID时, ( y - kernel_size ) /  stride  + 1 =  x ,根据x可以求出y。更详细的理解参考这里

def convolution2d_transpose(
    inputs,
    num_outputs,
    kernel_size,
    stride=1,
    padding='SAME',
    data_format=DATA_FORMAT_NHWC,
    activation_fn=nn.relu,
    normalizer_fn=None,
    normalizer_params=None,
    weights_initializer=initializers.xavier_initializer(),
    weights_regularizer=None,
    biases_initializer=init_ops.zeros_initializer(),
    biases_regularizer=None,
    reuse=None,
    variables_collections=None,
    outputs_collections=None,
    trainable=True,
    scope=None):
  """
    增加一个带BN的反卷积层,这个函数创建一个weights变量代表卷积核,与输入进行卷积。如果normalizer_fn为None,第二个biase变量将会被创建,加在卷积后的结果上面。
  Args:
    inputs: 一个四维Tensor,形状为:[batch, height, width, in_channels]
    num_outputs: 整数,卷积核的个数.
    kernel_size: 卷积核大小,形状为[kernel_height, kernel_width],如果高和宽相同的话也可以是一个整数.
    stride: 卷积步长[stride_height, stride_width].如果高和宽相同的话也可以是一个整数.
    padding: 填充方式: 'VALID' 或者 'SAME'.
    data_format: 数据格式: `NHWC` (默认) 和 `NCHW` 
    activation_fn: 激活函数,默认为ReLU。如果设置为None,则不使用激活函数。     
    normalizer_fn: 归一化函数,用于代替biase的,如果归一化函数不为空,那么`biases_initializer`和`biases_regularizer` 将会被忽略,而且`biases`不会被添加到卷积结果。默认设置为None.
    normalizer_params: 归一化函数的参数
    weights_initializer: 权重初始化器,默认为xavier_initializer()
    weights_regularizer:权重正则化器,默认为None。
    biases_initializer: 偏置初始化器,默认是0初始化。如果设置为None,则跳过。 
    biases_regularizer: 偏置正则化器,默认为None。
    reuse: 是否重用该网络层机器变量,如果重用网络层,那么必须提供scope
    variables_collections: 变量集合,即把所有变量添加到这个集合中,默认为None.
    outputs_collections: 输出结果集合,把结果添加到这个集合中,默认为None
    trainable: 变量是否可训练,默认为True。
    scope: 变量的variable_scope
  Returns:
    A tensor representing the output of the operation.

12、slim.batch_norm():实现批量归一化

def batch_norm(inputs,
               decay=0.999,
               center=True,
               scale=False,
               epsilon=0.001,
               activation_fn=None,
               param_initializers=None,
               param_regularizers=None,
               updates_collections=ops.GraphKeys.UPDATE_OPS,
               is_training=True,
               reuse=None,
               variables_collections=None,
               outputs_collections=None,
               trainable=True,
               batch_weights=None,
               fused=None,
               data_format=DATA_FORMAT_NHWC,
               zero_debias_moving_mean=False,
               scope=None,
               renorm=False,
               renorm_clipping=None,
               renorm_decay=0.99,
               adjustment=None):
  """
   添加一个BN层,对于conv2d和fully_connected而言,BN层相当于一个归一化函数。对于CNN中的一个batch而言,
对所有样本的同一位置的所有特征图进行归一化,如第一个样本的第一个特征图、第二个样本的第一个特征图......、
第m个样本的第一个特征图进行归一化,它们共享均值、方差、beta、gamma。每个特征图被当做一个神经元来处理。
  注意: 训练时moving_mean 和 moving_variance 需要被更新,默认情况下,更新操作位于 `tf.GraphKeys.UPDATE_OPS`, 
因此需要把这些更新操作添加到`train_op`的依赖中,比如:
  ```
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss)
  ```
  Args:
    inputs: 一个四维tensor:[batch_size ,height,width ,channel]
    decay: moving average的衰减因子. `decay`的合理值是接近于1. 典型为: 0.999, 0.99, 0.9等。如果模型在训练集上表现很好,但是验证集或者测试集很差,则可以把decay设置为更小的值,比如0.9. 为了改善性能,可以尝试zero_debias_moving_mean=True。
    center:如果为true,则对归一化后的tensor添加偏置,如果为false,'beta'将会别忽略。
    scale: 如果为true, 则乘以 `gamma`.如果为False, `gamma` 将不被使用. 如果下一层是线性的,比如nn.relu,那么scale将会失效,因为缩放可以被下一层实现。
    epsilon: 一个加在方差上的小的浮点数,避免除零错误。
    activation_fn: 激活函数,默认为None。
    param_initializers: (可选)初始化器,为beta, gamma, moving mean,oving variance进行初始化。
    param_regularizers: (可选)参数正则化器,为beta和gamma进行正则化。
    updates_collections: 更新操作的集合,这个跟新操作需要和train_op同时执行,如果为None,必须要添加控制依赖,确保更新操作被计算。C
    is_training: BN层是否是训练模式,如果是训练模式,将使用指数滑动平均和decay参数计算`moving_mean`和`moving_variance`. 如果不是训练模型,将直接使用`moving_mean`和'moving_variance`.
    reuse: 该BN层的变量是否被重用,如果要重用,则需要提供scope。
    variables_collections: (可选)变量的集合。
    outputs_collections: BN层输出的集合。
    trainable: 如果为True,则把变量添加到`GraphKeys.TRAINABLE_VARIABLES` 
    batch_weights: (可选)一个tensor,形状为:'[batch_size]`,包含一系列batch条目的权重。如果提供,那么BN的归一化过程中将对mean和variance进行加权处理。
    fused: 如果为None或者True,则使用一个更快的实现方式。如果为False,那么使用系统推荐的实现方式。
    data_format: 数据格式 `NHWC` (default) 或`NCHW`。
    zero_debias_moving_mean: 为moving_mean使用zero_debias.它创建了一个新的变量对, 'moving_mean/biased' 和 'moving_mean/local_step'.
    scope: (可选)变量的`variable_scope`.
    renorm: 是否使用batch重归一化,这在训练时增加了额外的变量,该变量对预测时不影响。
    renorm_clipping: 这个重归一化的把'rmax', 'rmin', 'dmax' 映射为`Tensors`一个字典, 用来对重归一化指定范围。`(r, d)` 用于`corrected_value = normalized_value * r + d`,`r` 属于[rmin, rmax], `d`属于 [-dmax, dmax]. 如果没有rmax, rmin, dmax 将被设置为 inf, 0, inf.
    renorm_decay: 重归一化的权重衰减。
    adjustment: 这是一个调整函数,对输入值进行调整。
  Returns:
    A `Tensor` representing the output of the operation.

13、slim.max_pool2d()、slim.avg_pool2d():实现最大或者均值池化:

def max_pool2d(inputs,
               kernel_size,
               stride=2,
               padding='VALID',
               data_format=DATA_FORMAT_NHWC,
               outputs_collections=None,
               scope=None):
  """Adds a 2D Max Pooling op.
  Args:
    inputs: 一个4-D tensor,形状为[batch_size, height, width, channels]或者[batch_size, channels, height, width]
    kernel_size: 池化核的尺寸: [kernel_height, kernel_width],如果两个值相同的话可以为一个整数值。
    stride: 池化步长 [stride_height, stride_width].如果两个值相同的话可以为一个整数值。      
    padding: 填充方式,为 'VALID' 或者 'SAME'.
    data_format: 数据格式,支持 `NHWC` (default)和 `NCHW` 
    outputs_collections: 输出被添加到的集合
    scope: 可选的name_scope.
  Returns:
    返回池化操作后的tensor.
  """

def avg_pool2d(inputs,
               kernel_size,
               stride=2,
               padding='VALID',
               data_format=DATA_FORMAT_NHWC,
               outputs_collections=None,
               scope=None):
  """Adds a 2D average pooling op.
  """Adds a 2D Max Pooling op.
  Args:
    inputs: 一个4-D tensor,形状为[batch_size, height, width, channels]或者[batch_size, channels, height, width]
    kernel_size: 池化核的尺寸: [kernel_height, kernel_width],如果两个值相同的话可以为一个整数值。
    stride: 池化步长 [stride_height, stride_width].如果两个值相同的话可以为一个整数值。      
    padding: 填充方式,为 'VALID' 或者 'SAME'.
    data_format: 数据格式,支持 `NHWC` (default)和 `NCHW` 
    outputs_collections: 输出被添加到的集合
    scope: 可选的name_scope.
  Returns:
    返回池化操作后的tensor.
  """

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值