221. 最大正方形

动态规划

dp数组记录以i,j为右下角的最小边长

1. 如果该当前位置元素为0,则边长为0

2. 如果当前位置元素为1,则应该取,左,上,左上三个点的最小边长加1

class Solution {
public:
// 动态规划
    int maximalSquare(vector<vector<char>>& matrix) {
        if(matrix.empty()){
            return 0;
        }
        int m = matrix.size();
        int n = matrix[0].size();
        int result = 0;
        vector<vector<vector<int>>> dp(m,vector<vector<int>>(n,vector<int>(2,0))); // 用于标记以当前坐标为右下角的矩阵的长和宽,第一个位置表示行连续1的个数,第二个位置表示列连续1的个数
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[i].size();j++){
                if(matrix[i][j]=='0'){
                    dp[i][j][0]=0;
                    dp[i][j][1]=0;
                    continue;
                }
                if(i==0&&j==0){
                    // 左上角
                    dp[i][j][0] = 1;
                    dp[i][j][1] = 1;
                }else if(i==0&&j!=0){
                    // 第一行
                    dp[i][j][0] = dp[i][j-1][0] + 1;
                    dp[i][j][1] = 1;
                }else if(i!=0&&j==0){
                    // 第一列
                    dp[i][j][0] = 1;
                    dp[i][j][1] = dp[i-1][j][1] + 1;
                }else{
                    dp[i][j][0] = min(dp[i][j-1][0],min(dp[i-1][j][0],dp[i-1][j-1][0]))+1;
                    dp[i][j][1] = min(dp[i-1][j][1],min(dp[i-1][j][1],dp[i-1][j-1][1]))+1;
                }
                int min_v = min(dp[i][j][0],dp[i][j][1]);
                // cout<<i<<" "<<j<<" "<<dp[i][j][0]<<" "<<dp[i][j][1]<<endl;
                if(min_v*min_v>result){
                    result = min_v*min_v;
                }
            }
        }
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值