点我看原题
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入输出格式
输入格式:
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式:
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入样例#1:
5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
输出样例#1:
14
16
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
模板入门(shui)题(ti),不需要讲太多因为我很懒
接下来上代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
int a[500001],c[500001];
int n,m;
int lowbit(int k)//lowbit的计算
{ return k&(-k);
}
int Query(int k)//树状数组求和操作
{ int ret=0;
while (k>0)
{ ret+=c[k];
k-=lowbit(k);
}
return ret;
}
void change(int x,int d)//树状数组修改操作
{ while (x<=n)
{c[x]=c[x]+d;
x +=lowbit(x);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=i-lowbit(i)+1;j<=i;j++)
{
c[i]+=a[j];
}
}
int k,x,y,q=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&k,&x,&y);
if(k==1)
{
change(x,y);
}
if(k==2)
{
printf("%d\n",Query(y)-Query(x-1));//如果K=1就在区间【X,Y】中修改,否则就输出x到y的解
}
}
return 0;
}