TensorFlow(六)——MNIST分类之自动编码器

本文深入探讨了如何使用TensorFlow实现MNIST手写数字分类任务,通过构建自动编码器模型,详细阐述了模型训练过程及结果分析。
摘要由CSDN通过智能技术生成
import input_data
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

mnist = input_data.read_data_sets('data/', one_hot=True)

#设置训练超参
learning_rate = 0.01
training_epochs = 20
batch_size = 256
display_step = 1

examples_to_show = 10


#网络参数
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784

X = tf.placeholder("float", [None, n_input])

weights = {
    'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
    'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
    'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'decoder_b1': tf.V
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值