回归的线性模型(2)

Linear Models for Regression(2)

回归的线性模型(2)

其实越往后面越发现自己之前认识的片面性,但是对我这种记性不好的人来说还是要写一点东西总结一下,以便之后翻查,审视自己当初的思路有没有错误。不当之处还请各位及时批评。


接前文

前文已经看到,采用最大似然方法对目标变量的分布进行点估计时,容易产生过拟合现象, 通过引入分布参数的先验概率来引入正则化项,来限制模型复杂度,消除过拟合。

那么为什么限制模型复杂度,即让我们选择较为简单的模型是正确的做法呢?

为了寻找背后直觉,翻看了一些经典

MLAPP上面有这样一个例子——猜数字规则,通过已知数字来猜测产生这组数字的规则是什么。

例如,先给了我们一个16,我们脑海中会浮现以下一些规则:
* 偶数
* 2的n次幂
* 个位带6的数字
* 十位是1的数字
* 4的n次幂

当再给我们4,64,2时,我们就会肯定的说:是2的n次幂。

我们为什么不会说:是2的n次幂,除了32

我们得到的样本数据是有噪声的,当完美的拟合了样本数据之后,我们也完美的拟合了这些随机噪声。

PRML第三章后半段还涉及了对模型证据和超参选择的讨论,只看了计算过程,理解不深,后面慢慢理解后再添加这部分内容


还是前文的假设:

  • 考虑数据集 X={x1,...,xN}T ,对应目标值 t={t1,...,tn}
  • Φ(xn) 是一个函数,输入是数据集中某一向量 xn 输出是 xn 在我们选择的基函数的映射下,形成的一个新向量(我理解就是换一组更好的基)。所有样本经过 Φ 函数的映射后,形成了我们后面用的特征矩阵 Φ

之前我们的方法是直接用 y(x,w)=wTΦ+ϵ 拟合目标变量分布

其中 ϵ 是我们假设的一个均值为0,精度为 β 的高斯噪声

p(ϵ)=(ϵ | 0,β1)

然后, y(x,w) 自然也就变成了一个高斯分布

p(t | x,w,β)=(t | y(x,w),β1)

前文我们的方法是通过估计 w 的后验分布,选出使后验分布最大化的 w 来当作我们预测分布的参数,其实就是对 w 进行点估计

p(w | )p( | w)p(w)

贝叶斯方法说我不进行点估计,我不是估计出了 w 的后验分布了吗,我再根据这个后验分布去估计目标变量 t 的分布

p(t | )=p(t | w,)p(w | )dw

(*注意:这几个公式一定要看清里面的参数是标量还是向量,不然容易搞混公式意义)

先来看对 w 的分布的估计
观察公式

p(w | )p( | w)p(w)

更符合假设一点的写法:
p(w | X,t,β)p(t | w,X,β)p(w)

  • 其中的似然函数 p(t | w,X,β) 好办
    p(t | w,X,β)=n=1Np(tn | w,xn,β)

    p(tn | w,xn,β) 是啥:
    p(t | x,w,β)=(t | wTΦ(xn),β1)

    所以
    p(t | w,X,β)=n=1N(tn | wTΦ(xn),β1)

由于我们是对 w 进行估计(注意,对不同参数进行估计选择的共轭先验是不同的),似然函数是 w 的二次函数的指数形式,于是对应的先验分布是高斯分布:

p(w)=(w | m0,S0)

所以得 w 的后验分布为:

p(w | X,t,β)=(w | mN,SN)

其中

mN=SN(S10m0+βΦTt)

S1N=S1+βΦTΦ

至此,后验分布确定(其实还有超参 α —— w 的先验分布精度、 β ——高斯噪声精度,没有被确定,可以通过交叉验证或后面的证据近似来确定)

p(t | w,x,β)=(t | wTΦ(x),β)

注意,这里的 x 是我们要进行预测的新特征向量。

这里要求俩个分布的卷积,由高斯边缘密度公式的:

p(t | x,t,α,β)=(t | mTNΦ(x),σ2N(x))

其中预测分布的方差 σ2N(x) 为:

σ2N(x)=1β+Φ(x)TSNΦ(x)


MLAPP中还介绍了利用Laplace distribution做likelihood的方法

p(y | x,w,b)=Lap(y | wTx,b)exp(1b|ywTx|)

利用split variable trick转化成线性规划问题(linear program)

另介绍了一种神奇的损失函数——Huber loss function

LH(r,δ)={r22 δ|r|δ22if |r|δif |r|>δ

当误差较小时,等价于 2 范数,误差较大时,等价于 1 范数,此函数处处可微,可以用牛顿法等计算而非线性规划。

还有一张非常直观的表

LikelihoodPriorName
GaussianUniformLeast squares
GaussianGaussianRidge
GaussianLaplaceLasso
LaplaceUniformRobust regression
StudentUniformRobust regression
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值