Adaptive gradient descent without descent

Malitsky Y, Mishchenko K. Adaptive gradient descent without descent[J]. arXiv: Optimization and Control, 2019.

本文提出了一种自适应步长的梯度下降方法(以及多个变种方法), 并给了收敛性分析.

主要内容

主要问题:
min ⁡ x   f ( x ) . (1) \tag{1} \min_x \: f(x). xminf(x).(1)
局部光滑的定义:
若可微函数 f ( x ) f(x) f(x)在任意有界区域内光滑,即
∥ ∇ f ( x ) − ∇ f ( y ) ∥ ≤ L C ∥ x − y ∥ , ∀ x , y ∈ C , \|\nabla f(x) - \nabla f(y)\| \le L_{\mathcal{C}} \|x-y\|, \quad \forall x, y \in \mathcal{C}, f(x)f(y)LCxy,x,yC,
其中 C \mathcal{C} C有界.

本文的一个基本假设是函数 f ( x ) f(x) f(x)凸且局部光滑.

算法1 AdGD

在这里插入图片描述

定理1 ADGD-L

定理1. 假设 f : R d → R f: \mathbb{R}^d \rightarrow \mathbb{R} f:RdR 为凸函数且局部光滑. 则由算法1生成的序列 ( x k ) (x^k) (xk)收敛到(1)的最优解, 且
f ( x ^ k ) − f ∗ ≤ D 2 S k = O ( 1 k ) , f(\hat{x}^k) - f_* \le \frac{D}{2S_k} = \mathcal{O}(\frac{1}{k}), f(x^k)f2SkD=O(k1),
其中 x ^ k : = ∑ i = 1 k λ i x i + λ 1 θ 1 x 1 S k \hat{x}^k := \frac{\sum_{i=1}^k \lambda_i x^i + \lambda_1 \theta_1 x^1}{S_k} x^k:=Ski=1kλixi+λ1θ1x1, S k : = ∑ i = 1 k λ i + λ 1 θ S_k:= \sum_{i=1}^k \lambda_i + \lambda_1 \theta Sk:=i=1kλi+λ1θ.

算法2

在这里插入图片描述

L L L已知的情况下, 我们可以对算法1进行改进.

定理2

定理2 假设 f f f凸且 L L L光滑, 则由算法(2)生成的序列 ( x k ) (x^k) (xk)同样使得
f ( x ^ k ) − f ∗ = O ( 1 k ) f(\hat{x}^k)-f_*=\mathcal{O}(\frac{1}{k}) f(x^k)f=O(k1)
成立.

算法3 ADGD-accel

在这里插入图片描述

这部分没有理论证明, 是作者基于Nesterov中的算法进行的改进.

算法4 Adaptive SGD

在这里插入图片描述

这个算法是对SGD的一个改进.

定理4

在这里插入图片描述

代码

f ( x , y ) = x 2 + 50 y 2 f(x, y) = x^2+50y^2 f(x,y)=x2+50y2, 起点为 ( 30 , 15 ) (30, 15) (30,15).
在这里插入图片描述



"""
adgd.py
"""

import numpy as np
import matplotlib.pyplot as plt


State = "Test"

class FuncMissingError(Exception): pass
class StateNotMatchError(Exception): pass

class AdGD:

    def __init__(self, x0, stepsize0, grad, func=None):
        self.func_grad = grad
        self.func = func
        self.points = [x0]
        self.points.append(self.calc_one(x0, self.calc_grad(x0),
                                         stepsize0))
        self.prestepsize = stepsize0
        self.theta = None


    def calc_grad(self, x):
        self.pregrad = self.func_grad(x)
        return self.pregrad

    def calc_one(self, x, grad, stepsize):
        return x - stepsize * grad

    def calc_stepsize(self, grad, pregrad):
        part2 = (
            np.linalg.norm(self.points[-1]
                          - self.points[-2]) /
            (np.linalg.norm(grad - pregrad) * 2)

        )
        if not self.theta:
            return part2
        else:
            part1 = np.sqrt(self.theta + 1) * self.prestepsize
            return min(part1, part2)

    def update_theta(self, stepsize):
        self.theta = stepsize / self.prestepsize
        self.prestepsize = stepsize

    def step(self):
        pregrad = self.pregrad
        prex = self.points[-1]
        grad = self.calc_grad(prex)
        stepsize = self.calc_stepsize(grad, pregrad)
        nextx = self.calc_one(prex, grad, stepsize)
        self.points.append(nextx)
        self.update_theta(stepsize)

    def multi_steps(self, times):
        for k in range(times):
            self.step()

    def plot(self):
        if self.func is None:
            raise FloatingPointError("func is not defined...")
        if State != "Test":
            raise StateNotMatchError()
        xs = np.array(self.points)
        x = np.linspace(-40, 40, 1000)
        y = np.linspace(-20, 20, 500)
        fig, ax = plt.subplots()
        X, Y = np.meshgrid(x, y)
        ax.contour(X, Y, self.func([X, Y]), colors='black')
        ax.plot(xs[:, 0], xs[:, 1], "+-")
        plt.show()


class AdGDL(AdGD):

    def __init__(self, x0, L, grad, func=None):
        super(AdGDL, self).__init__(x0, 1 / L, grad, func)
        self.lipschitz = L


    def calc_stepsize(self, grad, pregrad):
        lk = (
            np.linalg.norm(grad - pregrad) /
            np.linalg.norm(self.points[-1]
                          - self.points[-2])
        )
        part2 = 1 / (self.prestepsize * self.lipschitz ** 2) \
                 + 1 / (2 * lk)
        if not self.theta:
            return part2
        else:
            part1 = np.sqrt(self.theta + 1) * self.prestepsize
            return min(part1, part2)



class AdGDaccel(AdGD):

    def __init__(self, x0, stepsize0, convex0, grad, func=None):
        super(AdGDaccel, self).__init__(x0, stepsize0, grad, func)
        self.preconvex = convex0
        self.Theta = None
        self.prey = self.points[-1]

    def calc_convex(self, grad, pregrad):
        part2 = (
            (np.linalg.norm(grad - pregrad) * 2) /
                np.linalg.norm(self.points[-1]
                        - self.points[-2])
        ) / 2
        if not self.Theta:
            return part2
        else:
            part1 = np.sqrt(self.Theta + 1) * self.preconvex
            return min(part1, part2)

    def calc_beta(self, stepsize, convex):
        part1 = 1 / stepsize
        part2 = convex
        return (part1 - part2) / (part1 + part2)

    def calc_more(self, y, beta):
        nextx = y + beta * (y - self.prey)
        self.prey = y
        return nextx

    def update_Theta(self, convex):
        self.Theta = convex / self.preconvex
        self.preconvex = convex

    def step(self):
        pregrad = self.pregrad
        prex = self.points[-1]
        grad = self.calc_grad(prex)
        stepsize = self.calc_stepsize(grad, pregrad)
        convex = self.calc_convex(grad, pregrad)
        beta = self.calc_beta(stepsize, convex)
        y = self.calc_one(prex, grad, stepsize)
        nextx = self.calc_more(y, beta)
        self.points.append(nextx)
        self.update_theta(stepsize)
        self.update_Theta(convex)

config.json:



{
  "AdGD": {
    "stepsize0": 0.001
  },
  "AdGDL": {
    "L": 100
  },
  "AdGDaccel": {
    "stepsize0": 0.001,
    "convex0": 2.0
  }
}



"""
测试代码
"""



import numpy as np
import matplotlib.pyplot as plt
import json
from adgd import AdGD, AdGDL, AdGDaccel



with open("config.json", encoding="utf-8") as f:
    configs = json.load(f)

partial_x = lambda x: 2 * x
partial_y = lambda y: 100 * y
grad = lambda x: np.array([partial_x(x[0]),
                              partial_y(x[1])])
func = lambda x: x[0] ** 2 + 50 * x[1] ** 2


fig, ax = plt.subplots()
x = np.linspace(-10, 40, 500)
y = np.linspace(-10, 20, 500)
X, Y = np.meshgrid(x, y)
ax.contour(X, Y, func([X, Y]), colors='black')

def process(methods, times=50):
    for method in methods:
        method.multi_steps(times)

def initial(methods, **kwargs):
    instances = []
    for method in methods:
        config = configs[method.__name__]
        config.update(kwargs)
        instances.append(method(**config))
    return instances

def plot(methods):
    for method in methods:
        xs = np.array(method.points)
        ax.plot(xs[:, 0], xs[:, 1], "+-", label=method.__class__.__name__)
    plt.legend()
    plt.show()

x0 = np.array([30., 15.])




methods = [AdGD, AdGDL, AdGDaccel]
instances = initial(methods, x0=x0, grad=grad, func=func)
process(instances)
plot(instances)


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值