人工智能-机器学习:机器学习的可解释性(Explainable Machine Learning)

本文深入探讨了机器学习的可解释性,包括为何需要(Why)、向谁解释(Who)、解释什么(What)、何时解释(When)以及如何解释(How)。可解释性在自动驾驶、医疗诊断等关键领域至关重要。文章强调了解释的对象和目的,如事前分析和事后分析,以及特征选择、特征构造等解释方法。同时,提出了可解释性是诠释与理解能力的交集,是未来研究的重点之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是机器学习的可解释性?

  • 可解释性(explainability)有大量的近义词,比如可理解 (understandable), 可诠释 (interpretable), 透明(transparent), 可靠 (robust), 公平 (fair), 明确(explicit),忠实(faithful), 负责(responsible)。这些词与可解释性 (explainable) 之间到底存在什么样的关系?
  • 最近有篇来自以色列的19页长文 Explainability in Human-Agent Systems,专门探讨可解释性的定义,以及与这些相似概念之间的联系与区别。
  • 文章提出五个根本问题 – Why, 为何需要解释。Who, 由谁向何人解释。What,解释什么。When,何时解释。How,如何解释。

一、Why 为何解释?

这个领域最重要的问题是:为什么机器学习需要可解释性?为了回答这个问题,必须知道一个机器学习系统究竟多需要可解释性。如果将此需求分为三层,大概可以这样分:

  1. 没什么用,不需要
  2. 用则有益,不用无损
  3. 不用不行,至关重要

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值