BAIRE ONE FUNCTIONS (Baire第一类函数)

JOHNNY HU, BAIRE ONE FUNCTIONS.

一些基本的定义(诸如逐点收敛, 一致收敛 F σ F_{\sigma} Fσ集合等)就不叙述了.

定义

Definition: D ⊆ R D\subseteq \mathbb{R} DR, 函数 f : D → R f:D\rightarrow \mathbb{R} f:DR, 若存在连续函数列 { f n } \{f_n\} {fn}逐点连续收敛到 f f f, 则称为Baire第一类函数.

注: Baire第n类函数为Baire第n-1类函数的极限点.

很显然是:

  • 连续函数必为Baire第一类函数;
  • 仅有有限个不连续点的函数是Baire第一类函数;
  • Baire第一类函数不一定是连续函数;
  • Baire第一类函数对加法和数乘封闭;

导函数

定理1: 假设 f : R → R f:\mathbb{R} \rightarrow \mathbb{R} f:RR是可微的, 则 f ′ f' f是Baire第一类函数.

lim ⁡ n → ∞ n ( f ( x + 1 n ) − f ( x ) ) . \lim_{n \rightarrow \infty} n(f(x+\frac{1}{n})-f(x)). nlimn(f(x+n1)f(x)).

一致收敛性质

引理1: 如果 f : [ a , b ] → R f:[a,b] \rightarrow \mathbb{R} f:[a,b]R是有界的Baire第一类函数, 则存在拥有共同界的连续函数列 { f n } \{f_n\} {fn}逐点收敛到 f f f.

f n ( x ) = { − M , i f   g n ( x ) < − M ; g n ( x ) , i f   − M ≤ g n ( x ) ≤ M ; M , i f g n ( x ) > M . f_n(x) = \left \{ \begin{array}{ll} -M, & \mathrm{if} \: g_n(x) < -M; \\ g_n(x),& \mathrm{if} \:-M \le g_n(x) \le M; \\ M, & \mathrm{if} g_n(x) > M. \end{array} \right. fn(x)=M,gn(x),M,ifgn(x)<M;ifMgn(x)M;ifgn(x)>M.

引理2: { f k } \{f_k\} {fk}为定义在 [ a , b ] [a, b] [a,b]上的Baire第一类函数列, ∑ k = 1 ∞ M k \sum_{k=1}^{\infty} M_k k=1Mk为一收敛的正项级数. 如果 ∣ f k ( x ) ∣ ≤ M k , i = 1 , 2 , … , k , ∀ x ∈ [ a , b ] |f_k(x)|\le M_k, i=1,2,\ldots,k, \forall x \in [a, b] fk(x)Mk,i=1,2,,k,x[a,b], 则函数 f ( x ) = ∑ k = 1 ∞ f k ( x ) f(x)=\sum_{k=1}^{\infty} f_k(x) f(x)=k=1fk(x)属于Baire一类函数.

∣ g k n − f k ∣ , ∣ ∑ k = 1 n g k n − ∑ k = 1 ∞ f k ∣ . |g_{kn}-f_k|, |\sum_{k=1}^n g_{kn}-\sum_{k=1}^{\infty}f_k|. gknfk,k=1ngknk=1fk.

定理2: 令函数列 { f n } \{f_n\} {fn}为定义在 [ a , b ] [a,b] [a,b]上的Baire第一类函数, 且一致收敛 f f f, 则 f f f同样是Baire第一类函数.

∣ f n k ( x ) − f ( x ) ∣ ≤ 2 − k ⇒ ∣ f n k + 1 − f n k ∣ ≤ 3 2 2 − k . |f_{n_k}(x)-f(x)|\le 2^{-k} \Rightarrow |f_{n_{k+1}}-f_{n_k}| \le \frac{3}{2}2^{-k}. fnk(x)f(x)2kfnk+1fnk232k.
g ( x ) : = ∑ k = 1 ∞ f n k + 1 − f n k . g(x):=\sum_{k=1}^{\infty} f_{n_{k+1}}-f_{n_k}. g(x):=k=1fnk+1fnk.

F σ F_{\sigma} Fσ

引理5: 假设 [ a , b ] = ∪ k = 1 n A k [a, b]=\cup_{k=1}^n A_k [a,b]=k=1nAk A k A_k Ak F σ F_{\sigma} Fσ集合, 则 [ a , b ] = ∪ k = 1 n B k [a,b]=\cup_{k=1}^nB_k [a,b]=k=1nBk, 其中 B k B_k Bk F σ F_{\sigma} Fσ集合, 且 B k ⊆ A k B_k \subseteq A_k BkAk 并且俩俩不交.

H i : = E i ∖ ∪ j = 1 i − 1 E j . H_i:=E_i \setminus \cup_{j=1}^{i-1}E_j. Hi:=Eij=1i1Ej.

引理8: 如果 E E E为一闭集. 如果 f : E → R f:E\rightarrow \mathbb{R} f:ER E E E上连续, 则存在一个扩张 f e : R → R f_e:\mathbb{R} \rightarrow \mathbb{R} fe:RR连续且 f ( x ) = f e ( x ) , x ∈ E f(x)=f_e(x), x\in E f(x)=fe(x),xE.

引理9: 假设 [ a , b ] = ∪ k = 1 n B k [a,b]=\cup_{k=1}^n B_k [a,b]=k=1nBk, B k B_k Bk F σ F_{\sigma} Fσ集且俩俩不交, 定义
f ( x ) : = ∑ k = 1 n c k χ B k ( x ) ,   x ∈ [ a , b ] . f(x):= \sum_{k=1}^n c_k \chi_{B_k}(x), \: x \in [a, b]. f(x):=k=1nckχBk(x),x[a,b].
f f f为Baire第一类函数.

定理3: 函数 f : [ a , b ] → R f:[a,b] \rightarrow \mathbb{R} f:[a,b]R [ a , b ] [a, b] [a,b]上连续, 当且仅当集合 { x ∈ [ a , b ] : f ( x ) < r } \{x\in[a, b]: f(x)<r\} {x[a,b]:f(x)<r} { x ∈ [ a , b ] : f ( x ) > r } \{x \in [a,b]: f(x) >r\} {x[a,b]:f(x)>r}关于任意 r ∈ R r \in \mathbb{R} rR F σ F_{\sigma} Fσ集合.

⇒ \Rightarrow 显然, 反之首先用引理5, 8, 9 (并结合一致收敛性) 证明 f f f在有界函数下成立, 再构造复合函数
h ∘ f h \circ f hf
其中 h h h为严格单调上升连续有界函数, 并利用事实:
a ∘ b a \circ b ab
a a a为连续函数 b b b为Baire第一类函数, 则 a ∘ b a \circ b ab亦为Baire第一类函数.

f f f的连续点

定义: A ⊆ R A \subseteq \mathbb{R} AR, 我们称
ω ( A ) : = sup ⁡ { ∣ f ( x ) − f ( y ) ∣ : x , y ∈ A } \omega (A):= \sup \{|f(x)-f(y)|:x,y\in A\} ω(A):=sup{f(x)f(y):x,yA}
f f f A A A处的振荡(oscillation).

定义: 对于 x 0 ∈ R x_0 \in \mathbb{R} x0R, 令 A δ : = ( x 0 − δ , x 0 + δ ) , ∀ δ > 0 A_{\delta}:= (x_0-\delta, x_0 + \delta), \forall \delta > 0 Aδ:=(x0δ,x0+δ),δ>0, 我们称
ω ( x 0 ) = lim ⁡ δ → 0 ω ( A δ ) \omega(x_0) = \lim_{\delta \rightarrow 0} \omega (A_{\delta}) ω(x0)=δ0limω(Aδ)
f f f在点 x 0 x_0 x0出的振荡.

引理10: f f f x 0 x_0 x0出连续的充分必要条件是 ω ( x 0 ) = 0 \omega(x_0)=0 ω(x0)=0.

引理11: 假设 { D n } \{D_n\} {Dn}为一闭集列且 [ a , b ] = ∪ n = 1 ∞ D n [a, b]=\cup_{n=1}^{\infty}D_n [a,b]=n=1Dn, 则至少有一个 D n D_n Dn包含一个闭区间.

注: 此乃Baire定理, 一个等价(或更一般)的描述为:

E ⊆ R n E \subseteq \mathbb{R}^n ERn F σ F_{\sigma} Fσ集, 即 E = ∪ k = 1 ∞ F k E=\cup_{k=1}^{\infty} F_k E=k=1Fk, 其中 F k F_k Fk为闭集. 若每个 F k F_k Fk皆无内点, 则 E E E也无内点.

定理5: 如果 f : R → R f:\mathbb{R} \rightarrow \mathbb{R} f:RR为Baire第一类函数, 则每个闭区间都包含 f f f的一个连续点.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值