l2空间的完备性_实分析笔记——Lp空间

ff8c00b751a10a4069ea37be0c7f80f5.png

本篇文章主要讲

空间的定义与基本性质。

一些过于基本的定义(例如范数,支撑集,完备性等等)不再赘述,需要的前置知识是一般测度空间的定义和测度空间上的积分(当然如果把空间

全都视作欧氏空间
,积分视作勒贝格积分也没什么问题)。

本文涉及的所有函数均视作实值函数,线性空间的标量域均取作实数域。

纯属个人闲着没事自high,有错误欢迎指出。

定义 1.1

为一测度空间,
为此空间上全体可测函数的集合 。

(1)设

上一可测函数,定义它的p-范数为

(2)对

定义
,即为全体p次可积函数的集合。同时在这个集合上定义等价关系:

定义空间

为集合
模去等价关系
,换句话说,几乎处处相等的函数将被视作同一个元素。
称为这个空间的
底空间

在不引起混淆的前提下,可以记作

,甚至
。下文中出现的
表示底空间取任意一个测度空间

例子:取

测度取为勒贝格测度,我们得到勒贝格p次可积空间

为全体正整数,测度取为计数测度,可测集为全体子集,我们得到空间

性质1.2

是线性空间。
只需注意

性质1.3

时,
空间,即为完备的赋范线性空间。
命题的分为两部分:1.
确实满足范数的条件。 2.
关于此范数完备,即任何柯西列都收敛。

引理1.4(Hölder 不等式)

.

不失一般性,只需要证明

的情形即可。

证明此命题需要用到的工具是用高中知识就可以简单证明的Young不等式:设

,则
.

,利用Young不等式得:

,证明完毕。

特别地,若

,我们称
互为
共轭指标。

引理1.5(Minkowski 不等式)

,则成立不等式

这恰好就是范数的三角不等式,作为推论得到

确实是标准的范数。

设p,q互为共轭指标,则(p-1)q=p,使用r=1时的Hölder不等式得:

两边约去公因式即证。当然,这个不等式对于任意有限多项求和也是对的。

藉由以上两个重要的不等式,我们证明了当

是赋范线性空间,下面证明它是完备的:

定理 1.6(Riesz-Fisher)

是完备空间。
在数学分析中我们就见到过用Bolzano-Weierstrass定理证明Cauchy收敛原理,要证明
完备,我们只需要证明从任何一个柯西列中都可以选出一个收敛子列。

中的一个柯西列,则根据定义,可以选出指标
,使得

我们期望序列

收敛,而这并不难证明。将序列写成和式:

,考虑证明级数绝对收敛。

考察无穷级数

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值