- 博客(39)
- 收藏
- 关注
原创 多元函数的极限与连续(一)
多元函数是一元函数的推广,对于多元函数我们将着重讨论二元函数.定义域的变化:数轴上的点集平面上的点集点与点集的关系:内点,外点,界点;聚点,孤立点,外点.上的完备性定理平面点列收敛的定义设为平面点列,为一固定点.若对任给的正数,存在正整数N,使得当n>N时,有,则称点列{Pn}收敛于点P哦,记作或柯西准则平面点列{Pn}收敛的充要条件是:任给正数,存在正整数N,使...
2020-03-05 11:56:44
3348
原创 傅里叶级数
一.三角级数·正交函数系最简单的周期运动,可用正弦函数来描写。由(1)所表达的周期运动也称为简谐运动。其中A为振幅,为初相角,为角频率。于是简谐运动y的周期为较为复杂的周期运动,则常是几个简谐运动的叠加由于简谐运动的周期为所以函数(2)的周期为T.对无穷多个简谐振动进行叠加就得到函数项级数若级数(3)收敛,则它所描述的是更为一般的周期运动现象。对于级数(3),我们只要讨论未完待续......
2019-11-27 12:03:54
4024
原创 C++——球的表面积和体积
编写程序计算并输出两个球的表面积和体积。其中第一个球的半径由键盘输入,第二个球的半径用学号后两位初始化。#include<iostream>#define pi 3.14159double sur(int);double vol(int);int f(int);int main(){ int n,r,m; cout<<"请输入半径:";cin&...
2019-11-27 12:02:02
6874
1
原创 C++——直角三角形面积
#include<iostream>#include<cmath>using namespace std;int main(){ double a,b,c,s,t,p; cout<<"请输入三个数字: "<<endl; do { cin>>a>>b>>c; t=(a*a+b*b==c...
2019-10-16 11:09:18
4341
原创 欧几里得空间——正交矩阵
设与是欧氏空间V在的两组标准正交基,它们之间的过渡矩阵是即因为是标准正交基,所以矩阵A的各项就是在标准正交基下的坐标,可以表示为相当于一个矩阵的等式A'A=E,或者定义7n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基。...
2019-06-10 22:47:29
3347
1
原创 欧几里得空间——标准正交基
定义5欧氏空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组。1.由单个非零向量所成的向量组也是正交向量组。2.正交向量组是线性无关的。3.在n维欧氏空间中,两两正交的非零向量不能超过n个。定义6在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。一组基为标准正交基的充要条件是:它的度量矩阵为单位矩阵。因为度量矩阵是正...
2019-06-09 17:41:33
15136
1
原创 幂级数——函数的幂级数展开
一.泰勒级数若函数f在点的某邻域上存在直至n+1阶的连续导数,则为拉格朗日型余项。如果函数f在处存在任意阶的导数,这时称级数为函数f在处的泰勒级数。定理11设f在点具有任意阶导数,那么f在区间上等于它的泰勒级数的和函数的充分条件:对一切满足不等式的x,有这里的是f在处的泰勒公式余项。如果f能在点的某邻域上等于其泰勒级数的和函数,则称函数f在点的这一领域上可以展开成泰勒级数,并称...
2019-06-08 14:09:42
7768
3
原创 欧几里得空间——度量矩阵
设V一个n维欧几里得空间,在V中取一组基对V中任意两个向量由内积的性质得令显然于是利用矩阵,还可以写成其中分别是的坐标,而矩阵称为基的度量矩阵,因而度量矩阵完全确定了内积,即不同基的度量矩阵是合同的设是空间V的另外一组基,而由到的过渡矩阵为C,即于是不难看出,基的度量矩阵度量矩阵是正定的对于非零向量即即反之,给定一个n级正定矩阵A及n维实线性空间V的一组基可以规定V上内积,使它...
2019-06-07 11:09:46
38786
1
原创 欧几里得空间——定义&基本性质
在线性空间中,向量之间的基本运算只有加法与数量乘法,统称为线性运算。定义1设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作它具有以下性质:1)2)3)4)当且仅当时这里是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间。在欧几里得空间的定义中,对它作为线性空间的维数并无要求,可以是有限维的,也可以是无限维的。例1 在线...
2019-06-06 21:53:36
13917
3
原创 幂级数
由幂函数序列所产生的函数项级数它称为幂级数。当即得一.幂级数的收敛区间定理1(阿贝尔定理)若幂级数(2)在处收敛,则对满足不等式的任何x,幂级数(2)收敛而且绝对收敛;若幂级数(2)在在发散,则对满足不等式的任何x,幂级数(2)发散。幂级数(2)的收敛域是以原点为中心的区间,若以2R表示区间的长度,则称R为幂级数的收敛半径。实际上,它就是使得幂级数(2)收敛的那些收敛点的绝对值的上...
2019-06-05 22:15:55
20155
2
原创 C语言——球体体积&判断素数&用递归计算Fibonacci数列
1.编写求圆球体体积的函数(体积V=4/3*π*R3),在主函数里输入球体半径R(使用Scanf()函数通过键盘输入)并调用该函数显示当R=3时球体体积。#include<stdio.h>#include<math.h>#define pi 3.1415926double sphere_volume(double n){ return (4/3.0)*pi*...
2019-06-02 17:14:21
2648
11
原创 微分中值定理及其应用——(不定式极限&洛必达法则)
我们把两个无穷小量或两个无穷大量之比的极限统称为不定式极限,分别记为型或型的不定式极限。以导数为工具研究不等式极限,这个方法通常称为洛必达(L'Hospital)法则。1.型不定式极限定理7 若函数f和g满足:(i)(ii)在点的某空心邻域上两者都可导,且(iii)(A可为实数,也可为或),则注意:若将定理7中换成只要相应地修正条件(ii)中的邻域,也可以得到同...
2019-06-01 21:32:04
3658
4
原创 微分中值定理——(罗尔定理、拉格朗日定理、导数极限定理、达布定理、柯西定理)
定理1(罗尔(Rolle)中值定理)若函数f满足如下条件:(i)f在闭区间[a,b]上连续;(ii)f在开区间(a,b)上可导;(iii)f(a)=f(b);则在(a,b)上至少存在一点使得罗尔定理的几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端高度相等,则至少存在一条水平直线,如图所示;注:定理中的三个条件缺一不可。定理2(拉格朗日(Lagrange...
2019-05-31 20:52:28
27137
3
原创 λ-矩阵(矩阵的有理标准形)
本节将对任意数域P来讨论,证明P上任一矩阵必相似于一个有理标准形矩阵。定义8对数域P上的一个多项式称矩阵为多项式的友矩阵。A的不变因子(即λE-A的不变因子)是定义9下列准对角矩阵其中分别是数域P上某些多项式的友矩阵,且满足A就称为P上的一个有理标准形矩阵。引理:(1)中矩阵A的不变因子为其中1的个数等于的次数之和n减去s.定理14数域P上n×n方阵A在P上相似于唯一的...
2019-05-30 09:04:54
18690
3
原创 函数列与函数项级数——(二)一致收敛函数列与函数项级数的性质
定理8(极限交换定理)设函数列在上一致收敛于f(x),且对每个n,则和均存在且相等,即这个定理指出:在一致收敛的条件下,中两个独立变量x与n,在分别求极限时其求极限的顺序可以交换,即类似地,若在(a,b)上一致收敛且存在,可推得若在(a,b)上一致收敛和定理9(连续性)若函数列在区间I上一致收敛,且每一项都连续,则其极限函数f在I上也连续。逆否命题:若各项为连续函数的函数列...
2019-05-29 13:28:44
8733
2
原创 函数列与函数项级数——(一)一致收敛性
一.函数列及其一致收敛性设是一列定义在同一数集E上的函数,称为定义在E上的函数列,(1)也可简单地写作或函数列的极限函数记作f,则有或函数列极限的定义:当n>N时,有使函数列收敛的全体收敛点集合,称为函数列的收敛域。定义1设函数列与函数f定义在同一数集D上,当n>N时,有则称函数列在D上一致收敛于f,记作函数列在D上一致收敛,必在D上每一点都收敛;反之,在D...
2019-05-28 18:53:42
34291
8
原创 λ-矩阵(若尔当标准形的理论推论)
在复数域上讨论.1.计算若尔当标准形的初等因子若尔当块的初等因子是事实上,考虑它的特征矩阵显然这就是的n级行列式因子,由于有一个n-1级子式是所以它的n-1级行列式因子是1,从而它一下各级的行列式因子全为1。因此,它的不变因子由此即得,的初等因子是2.计算若尔当形矩阵的初等因子设是一个若尔当形矩阵,其中既然的初等因子是所以与等价。于是与等价,因此,J的全部初等因子是这就是说,每...
2019-05-27 23:42:15
10434
1
原创 λ-矩阵(初等因子)
在复数域上讨论。定义7把矩阵A(或线性变换)的每个次数大于零的不变因子分解成互不相同的首项为1的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A(或线性变换)的初等因子。设一个n级矩阵的全部初等因子为已知,在全部初等因子中将同一个一次因式的方幂的那些初等因子按降幂排列,而且当这些初等因子的个数不足n时,就在后面补上适当个数的1,使得凑成n个,设所得排列为...
2019-05-26 16:22:09
18721
1
原创 λ-矩阵(矩阵相似的条件)
引理1:如果有n×n数字矩阵使则A与B相似。证明:因它又与相等,进行比较后应有因此而故A与B相似。引理2:对于任何不为零的n×n数字矩阵A和λ-矩阵与一定存在λ-矩阵与以及数字矩阵和使定理7设A,B使数域P上两个n×n矩阵,A与B相似的充分必要条件是它们的特征矩阵和等价。注:矩阵A的特征矩阵的不变因子简称为A的不变因子。推论:矩阵A与B相似的充分必要条件是它们有相同的不变因...
2019-05-25 19:15:22
7939
3
原创 λ-矩阵(不变因子)
λ-矩阵的标准形是唯一的.定义5设λ-矩阵的秩为r,对于正整数中必有非零的k级子式,中全部k级子式的首项系数为1的最大公因式称为的k级行列式因子。对于秩为r的λ-矩阵,行列式因子一共有r个,行列式因子的意义在于初等变换下是不变的。定理3:等价的λ-矩阵具有相同的秩与相同的各级行列式因子。现在来计算标准形矩阵的行列式因子,设标准形为其中是首项系数为1的多项式,且在这种形式的矩...
2019-05-24 20:27:29
16848
2
原创 λ-矩阵(λ-矩阵在初等变换下的标准形)
设P是一个数域,λ是一个文字,做多项式环 一个矩阵,如果它的元素是λ的多项式,即的元素,就称为λ-矩阵。把以数域P中的数为元素的矩阵称为数字矩阵。定义1:如果λ-矩阵中有一个级子式不为零,而所有r+1级子式(如果有的话)全为零,则称的秩为r,零矩阵的秩规定为零。定义2:一个的λ-矩阵称为可逆的,如果有一个的λ-矩阵使这里E使n 级单位矩阵,适合(1)的矩阵(它是唯一的)称为的逆矩阵,记为...
2019-05-23 13:14:15
13053
1
原创 最小多项式
根据哈密顿-凯莱定理,任给数域P上的一个n级矩阵A,总可以找到数域P上一个多项式使如果多项式使我们就称以A为根。以A为根的多项式是很多的,其中次数最低的首项系数为1的以A为根的多项式称为A的最小多项式。讨论如何应用最小多项式来判断一个矩阵能否对角化.引理1:矩阵A的最小多项式是唯一的。引理2:设是矩阵A的最小多项式,那么以A为根的充分必要条件是整除.由此可知,矩阵A的最小多项式是A...
2019-05-22 22:48:25
34819
1
原创 若尔当(Jordan)标准形介绍
并不是每个线性变换都有一组基使它在这组基下矩阵为对角形,一般线性变换通过选择基能将它的矩阵变为什么样的简单形状的矩阵,这个问题也等价于:任一方阵经过相似变换能变成什么样的标准形,下面将限制在复数域中讨论。定义1形式为的矩阵称为一个若尔当块,其中是复数。由若干个若尔当块组成的准对角矩阵称为一个若尔当形矩阵,其中为复数,有一些可以相同。例:都是若尔当形矩阵。关于若尔当形矩阵的主要结...
2019-05-21 19:16:33
26898
1
原创 不变子空间
定义1设是数域P上线性变换,W是V的子空间。如果W中的向量在下的像仍在W中,换句话说,对于W中任一向量,有我们就称W是的不变子空间,简称子空间。例1:整个空间V和零子空间,对于每个线性变换来说都是子空间。例2:的值域与核都是的子空间。例3:若线性变换与是可交换的,则的核与值域都是子空间。在的核V中任取一向量,则所以在下的像是零,即.这就证明了V。是子空间,在的值...
2019-05-20 22:47:28
15799
2
原创 数项级数——(三)一般项级数
一.交错级数若级数的各项符号正负相间即则称(1)为交错级数。定理1(莱布尼茨判别法)若交错级数(1)满足下述两个条件:(i)数列单调递减;(ii)则级数(1)收敛。推论:若级数(1)满足莱布尼茨判别法的条件,则收敛级数(1)的余项估计式为二.绝对收敛级数及其性质若级数各项绝对值所组成的级数收敛,则称级数(2)为绝对收敛级数;若级数(2)收敛,而级数(3)不收敛,...
2019-05-18 12:15:51
3431
3
原创 线性变换的值域与核
定义1设是线性空间V的一个线性变换,的全体像组成的集合称为的值域,用表示,所有被变成零向量组成的集合称为的核,用表示。若用集合的记号则线性变换的值域于核都是V的子空间,他们对加法和数量乘法是封闭的。的维数称为的秩,的维数称为的零度。例1:在线性空间中,令则的值域就是的核就是子空间P。定理1设是n维线性空间V的线性变换,是V的一组基,在这组基下的矩阵是A,则(1)的值域是...
2019-05-17 20:12:12
18071
2
原创 数项级数——(二)正项级数
一.正项级数收敛性的一般判别同号级数;正项级数;由于级数与其部分和数列具有相同的敛散性,得如下定理。定理1.正项级数收敛的充要条件是:部分和数列有界,即存在某正数M,对一切正整数n有定理2.(比较原则)设和是两个正项级数,如果存在某正数N,对一切n>N都有则(i)若级数收敛,则级数也收敛;(ii)若级数发散,则级数也发散;(大收小发)推论设...
2019-05-16 16:58:10
8204
1
原创 对角矩阵
定理1设是n维线性空间V的一个线性变换,的矩阵可以在某一组基下为对角矩阵的充分必要条件是,有n个线性无关的特征向量。定理2属于不同特征值的特征向量是线性无关的。推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n个不同的根,即有n个不同的特征值,那么在某组基下的矩阵是对角形的。推论2在复数域上的线性空间中,如果线性变换的特征多项式没有重根,那么在某组基下的...
2019-05-15 22:53:27
15723
1
原创 数项级数——(一)级数的收敛性
定义1给定一个数列,对它的各项依次用“+”号连接起来的表达式称为常数项无穷级数或数项级数(也常简称级数),其中称为数项级数(1)的通项或一般项。数项级数(1)也常写作或简单写作.数项级数(1)的前n项之和,记为称它为数项级数(1)的第n个部分和,也简称部分和。定义2若数项级数(1)的部分和数列收敛于S(即),则称数项级数(1)收敛,称S为数项级数(1)的和,记作或...
2019-05-14 21:31:28
26226
1
原创 特征值与特征向量(二)
特征子空间对于线性变换的任一特征值,全部适合条件的向量所成的集合,也就是的属于的全部特征向量再加上零向量所成的集合,是V的一个子空间,称为的一个特征子空间,记为。显然的维数就是属于的线性无关的特征向量的最大个数。用集合记号可写为如在数域P上能分解为一次因式的乘积,由根与系数的关系可知,A的全体特征值的和为(称为A的迹,记为),而A的全体特征值的积为.定理:相似的矩阵有相同的...
2019-05-13 13:14:56
870
1
原创 反常积分的性质与收敛判别
无穷积分的性质与收敛判别 瑕积分的性质与收敛判别 柯西准则: 无穷积分收敛的充要条件是:只要便有 柯西准则: 瑕积分(瑕点为a)收敛的充要条件是:只要总有 性质1(线性性): 若与都收敛,为任意常数,则也收敛,且 性质1(线性性): 设函数与...
2019-05-12 23:31:27
22431
4
原创 特征值与特征向量(一)
定义1:设是数域P上线性空间V的一个线性变换,如果对于数域P中一数存在一个非零向量,使得那么称为的一个特征值,而称为的属于特征值的一个特征向量。从几何上来看,特征向量的方向经过线性变换后,保持在同一条直线上,这时或者方向不变(λ。>0),或者方向相反(λ。<0),至于λ。=0时,特征向量就被线性变换变成零向量。(零向量不是特征向量)如果ξ是线性变换的属于特征值的特征向量...
2019-05-11 13:19:10
5372
1
原创 反常积分(1.反常积分概念)
定义:无穷积分设函数定义在无穷区间上,且在任何有限区间上可积,如果存在极限(1)则称此极限为函数在上的无穷反常积分(简称无穷积分),记作并称收敛,如果极限(1)不存在,为方便起见,称发散。瑕积分设函数定义在区间上,在点a的任一右邻域上无界,但在任何内闭区间上有界且可积,如果存在极限(2)则称此极限为无界函数在上的反常积分,记作,并称反常积分收敛,如果极限(2)不存在,反常积分发散,点a称...
2019-05-10 22:56:54
20366
2
原创 子空间的直和
直和的定义:设是线性空间V的子空间,如果和中每个向量的分解式是唯一的,这个和就称为直和,记为推广:设都是线性空间V的子空间,如果和中每个向量的分解式是唯一的,这个和就称为直和,记为定理: 1. 和是直和的充分必要条件是等式只有在全为零向量时才成立. 推论:和为直和的充分必要条件是 2. 设是线性空间V的子空间,令,则的充分必要条件为维维维...
2019-05-09 10:27:38
13590
1
原创 正定二次型与半正定二次型
对于实二次型其中A是实对称的,下列条件等价:正定的(1)是正定的.(2)它的正惯性指数p等于n.(3)有可逆实矩阵C,使得其中(4)实对称矩阵A是正定的,有实可逆矩阵C,使得A=C'EC=C'C.(5)A的顺序主子式全大于零.半正定的(1)是半正定的.(2)它的正惯性指数p与秩r相等.(3)有可逆实矩阵C,使得其中(4)有实矩阵C使得A=C'C.(5...
2019-05-08 23:18:06
12284
2
原创 定积分的应用(三)
旋转曲面的面积:一.微元法分割T. 近似求和. 取极限.二.旋转曲面的面积设平面光滑曲线C的方程为(不妨设f(x)>0),这段曲线绕x轴旋转一周得到旋转曲面。当很小时,此狭带的面积近似于由这两个圆所确定的圆台的侧面积即其中由于因此由f'(x)的连续性可以保证所以得到直角坐标方程:面积S为 参数方程:且面积S为 极坐标方程:面积S为...
2019-05-07 20:05:32
789
1
原创 定积分的应用(二)
一. 平面曲线的弧长设曲线C由参数方程, (1) 给出,如果与在上连续可微,且与不同时为零,则称C为一条光滑曲线。参数方程,,C是可求长的,弧长直角坐标方程,把它看作参数方程,C是可求长的,弧长极坐标方程,把它化为参数方程,弧长二. 曲率曲率:描述曲线局部性态的弯曲程度。:曲线在点P(x(t),y(t))处切线的倾角,倾角的增量,动点由P沿曲线移至Q(),:弧PQ的长,...
2019-05-06 23:30:26
522
1
原创 定积分的应用(一)
一.平面图形的面积1.直角坐标方程的情形 设函数, 或者函数 , ,x型区域:; y型区域:;2.参数方程的情形 参数方程为,则。3.极坐标方程的情形设极坐标方程则。二.由平行截面面积求体积导出截面面积,求体积截面面积函数是上的一个连续函数.则体积为:,旋转体的体积设是上的连续函数,是由平面图形,绕x轴旋转一周所得的旋转体,则截面...
2019-05-05 22:57:18
5556
2
原创 定积分可积的充要条件
可积的第一充要条件函数f在[a,b]上可积的充要条件是:f在[a,b]上的上积分与下积分相等,即S=s.可积的第二充要条件函数f在[a,b]上可积的充要条件是:任给正数,,总存在某一分割T,使得S(T)-s(T)<,即.可积的第三充要条件函数f在[a,b]上可积的充要条件是:任给正数,,总存在某一分割T,使得属于T的所有小区间中,对应于振幅的那些小区间的总长....
2019-05-04 21:07:44
20274
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人