Improving Adversarial Robustness via Channel-Wise Activation Suppressing

文章目录

Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via channel-wise activation suppressing. In International Conference on Learning Representations (ICLR), 2021.

Yan H., Zhang J., Niu G., Feng J., Tan V., Sugiyama M. CIFS: Improving adversarial robustness of CNNs via channel-wise importance-based feature selection. In International Conference on Machine Learning (ICML), 2021.

这两篇论文发现natural和adversarial样本在激活层的大小和分布有显著的不同.

主要内容

如上两图所示, 对抗样本的magnitude相较于干净样本要普遍大一些, 重要性的分布相较于干净分布更趋于均匀分布.
所以可以认为, 倘若我们能够恢复正常的大小以及回归正常的重要性指标, 那么就能够提高网络鲁棒性.

注: 上面的重要性分布是这么计算的: 对于固定的类, 计算每个channel对于判别为该类的贡献度是否超越一个阈值, 以统计的综合频率为最后的重要性.

对于每一个block (比如resnet中的block), 在最后的输出部分辅以重加权, 使得重要的激活层能够更加突出.
重加权是通过新的全连接层实现的, 假设特征图大小为
f l ∈ R H × W × K , f^l \in \mathbb{R}^{H \times W \times K}, flRH×W×K,
其中 K K K为channels的数目, 首先通过GAP得到:
f ^ k l = 1 H × W ∑ i ∑ j f k l ( i , j ) . \hat{f}_k^l = \frac{1}{H \times W} \sum_i \sum_j f_k^l (i, j). f^kl=H×W1ijfkl(i,j).
再通过全连接层 M l = [ M 1 l , ⋯   , M C l ] ∈ R K × C M^l = [M_1^l, \cdots, M_C^l] \in \mathbb{R}^{K \times C} Ml=[M1l,,MCl]RK×C重加权
f ~ l = { f l ⊗ M y l , training , f l ⊗ M y ^ l , test . \tilde{f}^l = \left \{ \begin{array}{ll} f^l \otimes M_y^l, & \text{training}, \\ f^l \otimes M_{\hat{y}}^l, & \text{test}. \end{array} \right . f~l={flMyl,flMy^l,training,test.
其中训练时, y y y就是样本标签, 而测试时,
y ^ = arg ⁡ max ⁡ i f ^ T M i , \hat{y} = \arg \max_i \hat{f}^TM_i, y^=argimaxf^TMi,
即预测值.
所以, 显然为了让 M y M_y My能够与样本标签紧密联系, 在训练的时候, 需要额外最小化一个交叉熵损失:
L C A S ( p ( x ′ , θ , M ) , y ) = − log ⁡ p y ( x ′ ) . \mathcal{L}_{CAS}(p(x',\theta,M), y) = -\log p_y(x'). LCAS(p(x,θ,M),y)=logpy(x).
这里 x ′ x' x表示对抗样本.

CIFS的思路是类似的, 这里不多赘述了.

代码

CAS

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值