[paper]IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

本文深入探讨了对抗训练中误分类样本对模型鲁棒性的影响,发现误分类样本的处理对鲁棒性至关重要。文章提出了MART(Misclassification Aware Adversarial Training)算法,通过区分正确和错误分类的样本,增强对抗训练效果。实验表明,这种方法能显著提高对抗鲁棒性,甚至在半监督情况下也能有效利用未标记数据。
摘要由CSDN通过智能技术生成

对抗训练是当前最有效的防御措施,经常被公式化为最小-最大优化问题。
在这里插入图片描述

where n is the number of training examples and l l l(·) is the classification loss, such as the commonly used cross-entropy (CE) loss.Recently, adversarial training with adversarial examplesgeneratedbyProjectedGradientDescent(PGD)

内部的最大化用来生成对抗样本,外部最小化用来训练鲁棒的DNN模型。
本文研究了对抗训练中正确分类和错误分类对最终鲁棒性的不同影响,并发现错误分类的样本确实会对鲁棒性产生较大的影响。
在错误分类上使用不同的最大化方法对最终鲁棒性的影响微乎其微,但不同的最小化方法影响却非常大。
在这里插入图片描述
基于上述发现,本文提出了一种新的防御算法:MART(Misclassification Aware adveRsarial Training )以及MART的一种半监督形式。
MART可以明确区分训练过程中分类错误和分类正确的样本。
半监督MART可以利用未标记的数据进一步提高鲁棒性。

本文的主要贡献:

  • 研究了错误分类和正确分类的示例对对抗训练的最终鲁棒性的不同影响。 发现对错误分类样本进行的操作对最终的鲁棒性影响更大,并且在最小-最大优化框架下,最小化技术比最大化技术更为关键。
  • 提出了一个对抗风险正则化(regularized adversarial risk)方法,将错误分类样本的明显区别作为正则。基于此,提出了MART防御算法。
  • 实验表明,通过将重点放在错误分类的样本上,可以显著提高对抗鲁棒性,还可以帮助改善使用未标记数据的对抗训练。

MISCLASSIFICATION AWARE ADVERSARIAL RISK
在这里插入图片描述
在这里插入图片描述
训练的样本可以分为两个子集,分类正确的样本为 S h θ + S^{+}_{h_{\theta}} Shθ+ 分类错误的样本为 S h θ − S^{-}_{h_{\theta}} Sh

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值