位姿估计中的ISM (Implicit Shape Model) 论文翻译笔记

一、摘要

        通过使用隐式形状模型,将识别和分割合并为一个过程,该模型将两者集成为一个通用的概率框架。除了识别和分割外,它还生成每一个像素的置信度,来指定支持一个区域,并评价它可以被信任的程度,这种方法可以处理多物体问题并基于MDL标准解决了重叠假设之间的歧义问题。结果表明,该方法优于以前发表的方法,并且需要更小数量级的训练集。

二、介绍

        我们提出了一个两阶段的方法。第一个阶段是学习一个带有局部特征的codebook;第二个阶段是学习一个Implicit Shape Model (ISM) 隐式形状模型,它指定了codebook entries(密码本条目)对应了检测物体的哪个部位。我们不会去定义一包含所有可能形状的显式模型,而是去表达一个通过局部特征相互联系而形成的一个隐式模型。这样做的好处是灵活性好,并且需要训练样本数少。例如,当学习有关节的物体(奶牛)进行分类时,我们的方法不需要查看训练中的每一个可能的表达方式。它可以将一头训练奶牛的前腿信息与来自不同奶牛的后腿信息结合以识别新的测试图像(这边是数据特征的重用,可以节省数据集),因为两条腿的位置都符合相同的对象假设。这种想法类似于通过类原型或熟悉的对象视图的组合来表示新对象的方法。我们的方法不同之处在于,这种组合不是在整个示例对象之间,而是通过使用局部图像块组合,这种灵活性更大。此外ISM以概率公式表示框架,允许我们获得特定类别的分割作为识别过程的结果(概率模型的引用,允许了在识别的同时进行分割),这个分割又能反过来优化识别结果。特别地,我们获得了每个像素置信度,可以来指定识别和分割结果的可信度。

三、相关的研究

1. 韦伯提出学习局部部分并明确计算它们的联合分布。弗格斯等人将此方法扩展到尺度不变的对象部分并估计它们的联合空间和外观分布。然而,这种组合估计步骤的复杂性将他们的方法限制在少数。

2. 阿加瓦尔和罗斯保留大量对象部分并应用特征高效的分类器进行学习零件对之间的空间配置,然而,他们的学习方法依赖于关于相似空间中相同部分的重复观察,这需要大量的训练样本。

3. Borenstein & Ullman通过以拼图的方式组合对象碎片,然后他们没有于识别过程相结合。

四、本文的方法

        对于给定的类别是C的物体,它的隐式形状模型可以表示为ISM(C)=(I_{C},P_{I,C})。其中I_{C}是特定类别C的局部外观字母表(即codebook),是对象类别的原型。P_{I,C}是一个空间概率分布,它指定了可以在对象上的何处找到每个码本的条目。(总结一下,

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值