测试饱和了? 大数据测试就业薪资和前景究竟怎么样?

本文探讨了大数据测试在IT行业中的重要性,指出尽管基础岗位需求减少,但大数据相关细分岗位如测试仍有大量机会。文章还对比了大数据测试与传统数据测试的区别,并提供了学习路径和资源,鼓励测试人员转向测试平台开发以适应行业变化。
摘要由CSDN通过智能技术生成

随着不断有转行人员及毕业的大学生进入IT行业,在很多外界人眼里,这个行业的“缺口”已满,人员趋于饱和,但事实真的这样吗?还真没有。只是最基础的岗位需求在慢慢变少了,但行业中比较深的细分岗位,仍存在着非常多的机会,比如大数据测试岗位,看看市场对大数据岗位招聘需求: 

图片

图片

1

那什么是大数据测试

随着业务规模越来越大,大数据是现在中大型企业实际面临的问题,大数据技术需要解决的是海量数据(TB PB级别)环境下存储,计算问题,比如现在火爆的chatgpt背后都是大数据技术的支撑,那什么是大数据测试呢? 

大数据测试通常是指对采用大数据技术或者大数据应用的测试。大数据测试可以分成两个维度,一个维度是对大数据技术和数据测试,另一个维度是大数据应用产品测试。 

下图是大数据平台截图:

图片

大数据应用产品,涉及各行各业,在各个领域如:金融、教育、医疗、电商、交通、水力等都发挥着举足轻重的作用。

图片

2

大数据测试和传统数据测试的不同

大数据测试对比项传统数据测试
需要处理的数据量级较高数据量 级设计的数据量级较低
处理的数据包括结构化数据、非结构化数据、和半结 构化数据数据结 构以结构化数据为主
验证环节多,数据量大,较复杂验证工 作抽取数据来验证,相对简单
依赖HDFS、YARN和Zookeeper等集群环境环境要 求依赖传统数据库
依赖Hadoop生态系统组建和ETL 测试工具测试工 具依赖传统数据库和部分测试 工具
技能门槛高,需要测试人员掌握大数据相关技能测试人 员技术门槛相对较低

大数据测试主要围绕企业主流Hadoop生态圈技术(例如HDFS(分布式文件系统)、Hbase(分布 式数据库),Spark(分布式计算引擎)、Hive(分布式数据仓库)、Kafka(分布式消息中间件))及 相关业务产品测试展开 

所以,如果你是一名担心被自动化、测试开发的测试人员,不妨考虑转向测试平台开发。它不仅能够为你带来新的机遇和发展空间,还能让你重新点燃对测试工作的热情。通过学习测试平台开发,你将成为测试行业中备受追捧的人才,实现自己的逆袭之路!

总结:25k并不是一步登天,以下是我8k到25k的学习路线图和配套视频教程资源,如果你刚好需要,可以评论区,留言【000】直接拿走就好了

              下面是我整理的2023年最全的软件测试工程师学习知识架构体系图

一、Python编程入门到精通

二、接口自动化项目实战

三、Web自动化项目实战

四、App自动化项目实战

五、一线大厂简历

六、测试开发DevOps体系

七、常用自动化测试工具

八、JMeter性能测试

九, 银行业务测试

十,大数据测试和业务分析

 

 十一:项目实战

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值