随着不断有转行人员及毕业的大学生进入IT行业,在很多外界人眼里,这个行业的“缺口”已满,人员趋于饱和,但事实真的这样吗?还真没有。只是最基础的岗位需求在慢慢变少了,但行业中比较深的细分岗位,仍存在着非常多的机会,比如大数据测试岗位,看看市场对大数据岗位招聘需求:
1
那什么是大数据测试
随着业务规模越来越大,大数据是现在中大型企业实际面临的问题,大数据技术需要解决的是海量数据(TB PB级别)环境下存储,计算问题,比如现在火爆的chatgpt背后都是大数据技术的支撑,那什么是大数据测试呢?
大数据测试通常是指对采用大数据技术或者大数据应用的测试。大数据测试可以分成两个维度,一个维度是对大数据技术和数据测试,另一个维度是大数据应用产品测试。
下图是大数据平台截图:
大数据应用产品,涉及各行各业,在各个领域如:金融、教育、医疗、电商、交通、水力等都发挥着举足轻重的作用。
2
大数据测试和传统数据测试的不同
大数据测试 | 对比项 | 传统数据测试 |
需要处理的数据量级较高 | 数据量 级 | 设计的数据量级较低 |
处理的数据包括结构化数据、非结构化数据、和半结 构化数据 | 数据结 构 | 以结构化数据为主 |
验证环节多,数据量大,较复杂 | 验证工 作 | 抽取数据来验证,相对简单 |
依赖HDFS、YARN和Zookeeper等集群环境 | 环境要 求 | 依赖传统数据库 |
依赖Hadoop生态系统组建和ETL 测试工具 | 测试工 具 | 依赖传统数据库和部分测试 工具 |
技能门槛高,需要测试人员掌握大数据相关技能 | 测试人 员 | 技术门槛相对较低 |
大数据测试主要围绕企业主流Hadoop生态圈技术(例如HDFS(分布式文件系统)、Hbase(分布 式数据库),Spark(分布式计算引擎)、Hive(分布式数据仓库)、Kafka(分布式消息中间件))及 相关业务产品测试展开
所以,如果你是一名担心被自动化、测试开发的测试人员,不妨考虑转向测试平台开发。它不仅能够为你带来新的机遇和发展空间,还能让你重新点燃对测试工作的热情。通过学习测试平台开发,你将成为测试行业中备受追捧的人才,实现自己的逆袭之路!
总结:25k并不是一步登天,以下是我8k到25k的学习路线图和配套视频教程资源,如果你刚好需要,可以评论区,留言【000】直接拿走就好了
下面是我整理的2023年最全的软件测试工程师学习知识架构体系图
一、Python编程入门到精通
二、接口自动化项目实战
三、Web自动化项目实战
四、App自动化项目实战
五、一线大厂简历
六、测试开发DevOps体系
七、常用自动化测试工具
八、JMeter性能测试
九, 银行业务测试
十,大数据测试和业务分析
十一:项目实战