【NOIP2015模拟10.28B组】圣章-精灵使的魔法语题解

Description

【题目描述】
“伦福萨”【即" ( “】和“密西卡”【即” ) “】是两种不同的精灵咒语,已知一个成功的咒语符合如下的规定:
每一个密西卡之前都可以对应匹配到一个伦福萨,即为一个合法的精灵魔法咒语。
方便的是,我们将“伦福萨”视为” ( “,“密西卡”视为” ) “,合法的精灵魔法咒语即为一个合法的括号序列。
如:” ( ( ( ) ) ) “” ( ( ) ( ) ) “” ( ) ( ) ( ) “均为合法的魔法咒语,” ) ( “” ( ) ) ( “” ( ( “均为不合法的魔法咒语。
现在弗洛莉给我一个长长的“伦福萨”【即” ( “】和“密西卡”【即” ) “】的片段,每次给我一个l和r,让我判断需要在这个片段前最少添多少个“伦福萨”【即” ( “】,以及最少添多少个“密西卡”【即” ) “】可以成为一个合法的魔法咒语,更令人不爽的是,弗洛莉有的时候还会把一个“伦福萨”【即” ( “】变成“密西卡”【即” ) “】,或把一个“密西卡”【即” ) “】变为“伦福萨”【即” ( "】。

Input

第一行两个正整数n,m,表示我现在含有的咒语元素(“伦福萨”【即" ( “】和“密西卡”【即” ) “】)的个数以及弗洛莉给我的任务个数,
第二行包含n个字符(“伦福萨”【即” ( “】或“密西卡”【即” ) “】)表示一开始弗洛莉给我的咒语片段。
以下m行包括两种任务:
Change x,表示弗洛莉将位置为x上的咒语片段进行一次变换(原来是“伦福萨”【即” ( “】变为“密西卡”【即” ) “】,原来是“密西卡”【即” ) “】变为“伦福萨”【即” ( “】)。
Query l r,询问从l到r的区间的片段,在这个片段前最少添上多少个伦福萨”【即” ( “】,在这个片段后最少添上多少个“密西卡”【即” ) "】可以成为合法的魔法序列。

Output

每个询问对应一行答案,每行包括两个整数,表示在这个片段前最少添上多少个伦福萨”【即" ( “】,在这个片段后最少添上多少个“密西卡”【即” ) "】可以成为合法的魔法序列。

Sample Input

6 4
(()()(
Query 1 3
Query 3 6
Change 6
Query 1 6

Sample Output

0 1
1 1
0 0

Hint

1.片段为“ ( ( ) ”最右边填1个 ) 即可。
2.片段为“ ) ( ) ( ”最左边添1个 ( 最右边添1个 ) 即可。
3.片段为“ ( ( ) ( ) ) ”已经是合法片段。不需添加。

Data constraint

对于30%的数据,1 ≤ n ≤10
对于60%的数据,1 ≤ n ≤ 100
对于100%的数据,1 ≤ n ≤ 1000数据保证两棵树上每个节点的度均不超过5。

Solution

乍一看,是括号序,便马上会想到栈,但是再仔细观察,发现有区间查询和单点修改,便马上可以想到线段树。
每一个结点,我们记录两个值,一个是当前区间没有被匹配到右括号的左括号数,相对的,另外一个就是当前区间没有被匹配到左括号的右括号数。那么每一次合并的时候,就可以拿右边的区间里多出来的右括号去匹配左区间里多出来的左括号,就可以得到答案,很水。

Code

#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,len=0,ans,ans1;
const int N=150005;
char s[N];
bool a[N];
int tree[N<<2][2];
void modify(int w) {
	if(tree[w<<1][0]>tree[(w<<1)|1][1]) 
		tree[w][0]=tree[w<<1][0]-tree[(w<<1)|1][1];
	else tree[w][1]=tree[(w<<1)|1][1]-tree[w<<1][0];
	tree[w][0]+=tree[(w<<1)|1][0];
	tree[w][1]+=tree[w<<1][1];
}
void build(int now,int l,int r) {
	if(l==r) {
		if(a[l])tree[now][1]=1;
		else tree[now][0]=1;
		return;
	}
	int mid=(l+r)>>1;
	build(now<<1,l,mid);
	build((now<<1)|1,mid+1,r);
	tree[now][0]=tree[now][1]=0;
	modify(now);
}
void query(int now,int l,int r,int x,int y) {
	if(l>y)return;
	if(r<x)return;
	if(l>=x&&r<=y) {
		if(ans>tree[now][1])ans-=tree[now][1];
		else ans1+=tree[now][1]-ans,ans=0;
		ans+=tree[now][0];
		return;
	}
	int mid=(l+r)>>1;
	query(now<<1,l,mid,x,y);
	query((now<<1)|1,mid+1,r,x,y);
}
void update(int now,int l,int r,int x) {
	if(l>x)return;
	if(r<x)return;
	if(l==r) {
		swap(tree[now][0],tree[now][1]);
		return;
	}
	int mid=(l+r)>>1;
	update(now<<1,l,mid,x);
	update((now<<1)|1,mid+1,r,x);
	tree[now][0]=tree[now][1]=0;
	modify(now);
}
int main() {
	scanf("%d%d",&n,&m);
	char ch=getchar();
	while(ch!='('&&ch!=')')ch=getchar();
	while(ch=='('||ch==')') {
		s[++len]=ch;
		ch=getchar();
	}
	for(int i=1;i<=n;i++)
		if(s[i]==')')a[i]=1;
	build(1,1,n);
	while(m--) {
		bool flag=0;
		char ch=getchar();
		while(ch!='Q'&&ch!='C')ch=getchar();
		if(ch=='C')flag=1;
		while((ch>='a'&&ch<='z')||(ch>='A'&&ch<='Z')) {
			if(ch==')')a[++len]=1;
			ch=getchar();
		}
		int u,v;
		if(!flag) {
			scanf("%d%d",&u,&v);
			ans=ans1=0;
			query(1,1,n,u,v);
			printf("%d %d\n",ans1,ans);
		} else {
			scanf("%d",&u);
			update(1,1,n,u);
		}
	}
	return 0;
}
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值