Description
【题目描述】
“伦福萨”【即" ( “】和“密西卡”【即” ) “】是两种不同的精灵咒语,已知一个成功的咒语符合如下的规定:
每一个密西卡之前都可以对应匹配到一个伦福萨,即为一个合法的精灵魔法咒语。
方便的是,我们将“伦福萨”视为” ( “,“密西卡”视为” ) “,合法的精灵魔法咒语即为一个合法的括号序列。
如:” ( ( ( ) ) ) “” ( ( ) ( ) ) “” ( ) ( ) ( ) “均为合法的魔法咒语,” ) ( “” ( ) ) ( “” ( ( “均为不合法的魔法咒语。
现在弗洛莉给我一个长长的“伦福萨”【即” ( “】和“密西卡”【即” ) “】的片段,每次给我一个l和r,让我判断需要在这个片段前最少添多少个“伦福萨”【即” ( “】,以及最少添多少个“密西卡”【即” ) “】可以成为一个合法的魔法咒语,更令人不爽的是,弗洛莉有的时候还会把一个“伦福萨”【即” ( “】变成“密西卡”【即” ) “】,或把一个“密西卡”【即” ) “】变为“伦福萨”【即” ( "】。
Input
第一行两个正整数n,m,表示我现在含有的咒语元素(“伦福萨”【即" ( “】和“密西卡”【即” ) “】)的个数以及弗洛莉给我的任务个数,
第二行包含n个字符(“伦福萨”【即” ( “】或“密西卡”【即” ) “】)表示一开始弗洛莉给我的咒语片段。
以下m行包括两种任务:
Change x,表示弗洛莉将位置为x上的咒语片段进行一次变换(原来是“伦福萨”【即” ( “】变为“密西卡”【即” ) “】,原来是“密西卡”【即” ) “】变为“伦福萨”【即” ( “】)。
Query l r,询问从l到r的区间的片段,在这个片段前最少添上多少个伦福萨”【即” ( “】,在这个片段后最少添上多少个“密西卡”【即” ) "】可以成为合法的魔法序列。
Output
每个询问对应一行答案,每行包括两个整数,表示在这个片段前最少添上多少个伦福萨”【即" ( “】,在这个片段后最少添上多少个“密西卡”【即” ) "】可以成为合法的魔法序列。
Sample Input
6 4
(()()(
Query 1 3
Query 3 6
Change 6
Query 1 6
Sample Output
0 1
1 1
0 0
Hint
1.片段为“ ( ( ) ”最右边填1个 ) 即可。
2.片段为“ ) ( ) ( ”最左边添1个 ( 最右边添1个 ) 即可。
3.片段为“ ( ( ) ( ) ) ”已经是合法片段。不需添加。
Data constraint
对于30%的数据,1 ≤ n ≤10
对于60%的数据,1 ≤ n ≤ 100
对于100%的数据,1 ≤ n ≤ 1000数据保证两棵树上每个节点的度均不超过5。
Solution
乍一看,是括号序,便马上会想到栈,但是再仔细观察,发现有区间查询和单点修改,便马上可以想到线段树。
每一个结点,我们记录两个值,一个是当前区间没有被匹配到右括号的左括号数,相对的,另外一个就是当前区间没有被匹配到左括号的右括号数。那么每一次合并的时候,就可以拿右边的区间里多出来的右括号去匹配左区间里多出来的左括号,就可以得到答案,很水。
Code
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,len=0,ans,ans1;
const int N=150005;
char s[N];
bool a[N];
int tree[N<<2][2];
void modify(int w) {
if(tree[w<<1][0]>tree[(w<<1)|1][1])
tree[w][0]=tree[w<<1][0]-tree[(w<<1)|1][1];
else tree[w][1]=tree[(w<<1)|1][1]-tree[w<<1][0];
tree[w][0]+=tree[(w<<1)|1][0];
tree[w][1]+=tree[w<<1][1];
}
void build(int now,int l,int r) {
if(l==r) {
if(a[l])tree[now][1]=1;
else tree[now][0]=1;
return;
}
int mid=(l+r)>>1;
build(now<<1,l,mid);
build((now<<1)|1,mid+1,r);
tree[now][0]=tree[now][1]=0;
modify(now);
}
void query(int now,int l,int r,int x,int y) {
if(l>y)return;
if(r<x)return;
if(l>=x&&r<=y) {
if(ans>tree[now][1])ans-=tree[now][1];
else ans1+=tree[now][1]-ans,ans=0;
ans+=tree[now][0];
return;
}
int mid=(l+r)>>1;
query(now<<1,l,mid,x,y);
query((now<<1)|1,mid+1,r,x,y);
}
void update(int now,int l,int r,int x) {
if(l>x)return;
if(r<x)return;
if(l==r) {
swap(tree[now][0],tree[now][1]);
return;
}
int mid=(l+r)>>1;
update(now<<1,l,mid,x);
update((now<<1)|1,mid+1,r,x);
tree[now][0]=tree[now][1]=0;
modify(now);
}
int main() {
scanf("%d%d",&n,&m);
char ch=getchar();
while(ch!='('&&ch!=')')ch=getchar();
while(ch=='('||ch==')') {
s[++len]=ch;
ch=getchar();
}
for(int i=1;i<=n;i++)
if(s[i]==')')a[i]=1;
build(1,1,n);
while(m--) {
bool flag=0;
char ch=getchar();
while(ch!='Q'&&ch!='C')ch=getchar();
if(ch=='C')flag=1;
while((ch>='a'&&ch<='z')||(ch>='A'&&ch<='Z')) {
if(ch==')')a[++len]=1;
ch=getchar();
}
int u,v;
if(!flag) {
scanf("%d%d",&u,&v);
ans=ans1=0;
query(1,1,n,u,v);
printf("%d %d\n",ans1,ans);
} else {
scanf("%d",&u);
update(1,1,n,u);
}
}
return 0;
}