最近有好多道题都用到了方差,所以来发一下方差公式的化简
首先我们知道方差的公式是:
K = ( ∑ i = 1 m ( x i − p ) 2 ) ∗ m K=(\sum^{m}_{i=1}(x_{i}-p)^2)*m K=(∑i=1m(xi−p)2)∗m
K K K即方差, p p p为平均数。
把 ( x i − p ) 2 (x_{i}-p)^2 (xi−p)2拆开,可以得到
K = ( ∑ i = 1 m ( x i 2 − x i ∗ p − x i ∗ p + p 2 ) ) ∗ m K=(\sum^{m}_{i=1}(x_{i}^2-x_{i}*p-x_{i}*p+p^2))*m K=(∑i=1m(xi2−xi∗p−x
方差公式化简
最新推荐文章于 2022-12-31 12:41:12 发布
这篇博客详细介绍了方差公式的化简过程,从基本的方差定义出发,逐步展开并化简,最终得到简化后的公式。通过将(xi-p)²展开,结合平均数的性质,一步步推导出K=Am-B²,帮助读者深入理解方差的计算原理。
摘要由CSDN通过智能技术生成