方差公式化简

这篇博客详细介绍了方差公式的化简过程,从基本的方差定义出发,逐步展开并化简,最终得到简化后的公式。通过将(xi-p)²展开,结合平均数的性质,一步步推导出K=Am-B²,帮助读者深入理解方差的计算原理。
摘要由CSDN通过智能技术生成

最近有好多道题都用到了方差,所以来发一下方差公式的化简
首先我们知道方差的公式是:
K = ( ∑ i = 1 m ( x i − p ) 2 ) ∗ m K=(\sum^{m}_{i=1}(x_{i}-p)^2)*m K=(i=1m(xip)2)m
K K K即方差, p p p为平均数。
( x i − p ) 2 (x_{i}-p)^2 (xip)2拆开,可以得到
K = ( ∑ i = 1 m ( x i 2 − x i ∗ p − x i ∗ p + p 2 ) ) ∗ m K=(\sum^{m}_{i=1}(x_{i}^2-x_{i}*p-x_{i}*p+p^2))*m K=(i=1m(xi2xipx

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值