Part 0. 前言
模考题,想到了做法但是没去打,直到考试结束才知道想对了,遗憾离场,大悲。
Part 1. 思路
显然的,同一州内的所有城市都是不可分裂的,因为我们不可以把一个州劈成几部分,我们可以将其看作一个点。
对于整个岛国,如果这些点(州)与这些边(高速公路)组成的图就是一个 e-DCC(边双连通分量),则必不可分裂。所以我们的目标即为让图变为一个 e-DCC。
我们 Tarjan 求图中的 e-DCC 并缩点。此时,图中能分裂的点,即为度数为 1 1 1 的点,因为此时我们把它的唯一连边切断,图就不连通了。
我们可以将这样的点两个一组连边,图即连通。设这样的点有 k k k 个,答案似乎就是 k 2 \frac{k}{2} 2k 了。
且慢!如果有偶数个点,则结论正确。但是,如果有奇数个点,连完后必剩一点还是度数为 1 1 1,图仍可分裂。我们再连一条边,把它与其余任一点相连即可。所以答案即为 ⌈ k 2 ⌉ \lceil \frac{k}{2} \rceil ⌈2k⌉。
是不是和某奶牛题一模一样?
Part 2. 代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n,k,a[1000010],u[1000010],v[1000010],in[1000010];
int tt=1,to[2000010],nx[2000010],hd[1000010];
int rs,dfn[1000010],low[1000010];
int rt,dcc[1000010];
stack<int> s;
void add (int u,int v) {
to[++tt]=v;
nx[tt]=hd[u];
hd[u]=tt;
}
void tarjan (int u,int f) {
dfn[u]=low[u]=++rs;
s.push (u);
for (int i=hd[u];i;i=nx[i]) {
int v=to[i];
if (!dfn[v]) {
tarjan (v,i);
low[u]=min (low[u],low[v]);
} else if (i^(f^1)) low[u]=min (low[u],dfn[v]);
}
if (dfn[u]==low[u]) {
dcc[u]=++rt;
while (s.top ()^u) {
dcc[s.top ()]=rt;
s.pop ();
}
s.pop ();
}
}
signed main () {
ios::sync_with_stdio (0);
cin.tie (0);
cout.tie(0);
cin>> n>> k;
for (int i=1;i<n;i++)
cin>> u[i]>> v[i];
for (int i=1;i<=n;i++) cin>> a[i];
for (int i=1;i<n;i++) {
add (a[u[i]],a[v[i]]);
add (a[v[i]],a[u[i]]);
}
for (int i=1;i<=k;i++)
if (!dfn[i])
tarjan (i,0);
for (int i=1;i<n;i++)
if (dcc[a[u[i]]]!=dcc[a[v[i]]]) {
in[dcc[a[u[i]]]]++;
in[dcc[a[v[i]]]]++;
}
int ans=0;
for (int i=1;i<=rt;i++)
ans+=(in[i]==1);
cout<< (ans+1)/2;
return 0;
}
Part 3. 后记
总结:下次模考遇到这种板子题必须先开先做,拿分最重要。
完。