AT_joisc2019_k 合併 (Mergers) 蓝 题解

Part 0. 前言

模考题,想到了做法但是没去打,直到考试结束才知道想对了,遗憾离场,大悲。


Part 1. 思路

显然的,同一州内的所有城市都是不可分裂的,因为我们不可以把一个州劈成几部分,我们可以将其看作一个点。

对于整个岛国,如果这些点(州)与这些边(高速公路)组成的图就是一个 e-DCC(边双连通分量),则必不可分裂。所以我们的目标即为让图变为一个 e-DCC。

我们 Tarjan 求图中的 e-DCC 并缩点。此时,图中能分裂的点,即为度数为 1 1 1 的点,因为此时我们把它的唯一连边切断,图就不连通了。

我们可以将这样的点两个一组连边,图即连通。设这样的点有 k k k 个,答案似乎就是 k 2 \frac{k}{2} 2k 了。

且慢!如果有偶数个点,则结论正确。但是,如果有奇数个点,连完后必剩一点还是度数为 1 1 1,图仍可分裂。我们再连一条边,把它与其余任一点相连即可。所以答案即为 ⌈ k 2 ⌉ \lceil \frac{k}{2} \rceil 2k

是不是和某奶牛题一模一样?


Part 2. 代码

#include <bits/stdc++.h>
using namespace std;
#define int long long

int n,k,a[1000010],u[1000010],v[1000010],in[1000010];
int tt=1,to[2000010],nx[2000010],hd[1000010];
int rs,dfn[1000010],low[1000010];
int rt,dcc[1000010];
stack<int> s;

void add (int u,int v) {
	to[++tt]=v;
	nx[tt]=hd[u];
	hd[u]=tt;
}

void tarjan (int u,int f) {
	dfn[u]=low[u]=++rs;
	s.push (u);
	for (int i=hd[u];i;i=nx[i]) {
		int v=to[i];
		if (!dfn[v]) {
			tarjan (v,i);
			low[u]=min (low[u],low[v]);
		} else if (i^(f^1)) low[u]=min (low[u],dfn[v]);
	}
	if (dfn[u]==low[u]) {
		dcc[u]=++rt;
		while (s.top ()^u) {
			dcc[s.top ()]=rt;
			s.pop ();
		}
		s.pop ();
	}
}

signed main () {
	ios::sync_with_stdio (0);
	cin.tie (0);
	cout.tie(0); 
	cin>> n>> k;
	for (int i=1;i<n;i++)
		cin>> u[i]>> v[i];
	for (int i=1;i<=n;i++) cin>> a[i];
	for (int i=1;i<n;i++) {
		add (a[u[i]],a[v[i]]);
		add (a[v[i]],a[u[i]]);
	}
	for (int i=1;i<=k;i++)
		if (!dfn[i])
			tarjan (i,0);
	for (int i=1;i<n;i++)
		if (dcc[a[u[i]]]!=dcc[a[v[i]]]) {
			in[dcc[a[u[i]]]]++;
			in[dcc[a[v[i]]]]++;
		}
	int ans=0;
	for (int i=1;i<=rt;i++)
		ans+=(in[i]==1);
	cout<< (ans+1)/2;
	return 0;
}

Part 3. 后记

总结:下次模考遇到这种板子题必须先开先做,拿分最重要。

完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值