电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额。如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)。所以大家都希望尽量使卡上的余额最少。
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
Input多组数据。对于每组数据:
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
第一行为正整数n,表示菜的数量。n<=1000。
第二行包括n个正整数,表示每种菜的价格。价格不超过50。
第三行包括一个正整数m,表示卡上的余额。m<=1000。
n=0表示数据结束。
Output对于每组输入,输出一行,包含一个整数,表示卡上可能的最小余额。Sample Input
1 50 5 10 1 2 3 2 1 1 2 3 2 1 50 0Sample Output
-45 32
题解 :
本题是一个01背包问题,对于“如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)”这个条件,我们可以先对价格排序,把原始剩余金额先减去5元,这样就会保证在最后一次购买时卡余额足够5元,去买最贵的一件商品。
代码如下:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std;
bool cmp(long long a,long long b)
{
return a<b ;
}
long long dp[54000];
int main()
{
long long n,m,p[2000];
while(cin >> n&&n!= 0)
{
memset(dp,0,sizeof(dp));
memset(p,0,sizeof(p));
for(int i=0;i<=n-1;i++)
cin >> p[i] ;
sort (p,p+n,cmp);
cin >> m;
if(m<5)
{
cout << m <<endl;
continue ;
}
m-=5; //先减去5元,保证最后一次购买时剩余金额大于等于5元
for(int i = 0;i<n-1;i++) //注意:背包遍历到倒数第二个
{
for(int j=m;j>=p[i];j--)
{
dp[j]=max(dp[j],dp[j-p[i]]+p[i]);
}
}
cout << m+5-dp[m]-p[n-1] << endl;
}
return 0;
}