TensorFlow入门:ConfigProto和GPU

ConfigProto

tf.ConfigProto一般用在创建session的时候。用来对session进行参数配置

os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
session = tf.Session(config=config)

或者:

os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
config=tf.ConfigProto(gpu_options=gpu_options)
session = tf.Session(config=config)

GPU

如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 
如果实验室多人公用一台服务器,希望指定使用特定某块GPU。

可以在文件开头加入如下代码:

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"       # 使用第二块GPU(从0开始)

也可以制定使用某几块GPU:

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 2"    # 使用第一, 三块GPU

也可以用以下方法:

with tf.device('/gpu:0'):
    train_data=ImageDataGenerator(train_file,mode='training',batch_size=batch_size,
                                  num_classes=num_classes,shuffle=True)
    val_data=ImageDataGenerator(val_file,mode='inference',batch_size=batch_size,
                                num_classes=num_classes,shuffle=False)

    iterator=tf.data.Iterator.from_structure(train_data.data.output_types,
                                             train_data.data.output_shapes)
    next_batch=iterator.get_next()

禁用GPU:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值