ConfigProto
tf.ConfigProto
一般用在创建session
的时候。用来对session
进行参数配置
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
session = tf.Session(config=config)
或者:
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
config=tf.ConfigProto(gpu_options=gpu_options)
session = tf.Session(config=config)
GPU
如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存,
如果实验室多人公用一台服务器,希望指定使用特定某块GPU。
可以在文件开头加入如下代码:
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 使用第二块GPU(从0开始)
也可以制定使用某几块GPU:
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 2" # 使用第一, 三块GPU
也可以用以下方法:
with tf.device('/gpu:0'):
train_data=ImageDataGenerator(train_file,mode='training',batch_size=batch_size,
num_classes=num_classes,shuffle=True)
val_data=ImageDataGenerator(val_file,mode='inference',batch_size=batch_size,
num_classes=num_classes,shuffle=False)
iterator=tf.data.Iterator.from_structure(train_data.data.output_types,
train_data.data.output_shapes)
next_batch=iterator.get_next()
禁用GPU:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"