Skewed Sorting

Farmer John has 2^N (1 <= N <= 10) cows, each conveniently labeled
with paint on her flank with a number in the range 1..2^N. They are
standing in a line in some random order. The first cow in line is
cow_1; the second cow in line is cow_2; and so on (1 <= cow_i <=
2^N). Of course, cow_1 is unlikely to carry the painted label 1.

He performs the following algorithm to put them in order.

    1. If there is more than one cow, then partition the cows into
       two equal-sized sub-groups. Sort the first sub-group using
       this algorithm and then sort the second sub-group, also using
       this algorithm.

    2. Consider the current set of cows to be sorted as an equal-length
       pair of (potentially huge) base 2^N numbers. If the second
       number is smaller than the first one, then swap all the
       elements of the second one with those elements of the first
       one.

The cows would like to know how much distance they cover while
moving around during this 'sorting' procedure.

Given the initial configuration of the cows, process the list
according to the algorithm above and then print out:

    * the sum of the total distances traveled by all cows and

    * the final configuration of the cows after this 'sorting'
      procedure.

By way of example, consider this line of 2^3=8 cows:

        8 5 2 3 4 7 1 6

First, Farmer John will sort each half of the line separately:

        8 5 2 3 | 4 7 1 6

Since each half still has more than one cow, Farmer John will sort
those halves separately; starting with the 'first' half:

        8 5 | 2 3

Partitioning again, FJ makes

        8 | 5      and        2 | 3

each of which can be sorted by second rule, ultimately yielding:

        5 | 8      and        2 | 3 (<--unchanged)

The distance traveled by each cow during the first subgroup's sort
is 1, so total_distance_moved becomes 2. The second half is already
sorted, so the total_distance_moved stays at 2. The new configuration
of this sub-group is:

        5 8 | 2 3

For step 2 of the algorithm on the subgroup above, we compare the
two sides lexicographically (5 8 vs. 2 3). Since the 2 comes before
5, we swap the two elements of the first half with the corresponding
elements of the second half, yielding:

        2 3 5 8

Each of the four cows moved two spaces in this swap, contributing
a total of 8 moves, so total_distance_moved becomes 10.

Consider the other half of the cows; we divide the list of four
into two sub-groups:

        4 7 | 1 6

Each pair (4, 7) and (1, 6) is already sorted.

Comparing (4 7) to (1 6), since 1 comes before 4, we must swap the
two sub-groups:

        1 6 4 7

which contributes a total of 8 more moves, bringing total_distanced_move
to 18.

After the operations above, the list looks like this (and it's time
for step 2 to be performed on the two groups of 4):

        2 3 5 8 | 1 6 4 7

Since 1 comes before 2, we must swap the halves, this yielding this
configuration:

        1 6 4 7 2 3 5 8

Since each of 8 cows moved four units, this contributes a total of
32 more moves, making total_distance_moved become 50

Therefore, the answer is 50 and 1 6 4 7 2 3 5 8.
* Line 1: A single integer: N

* Lines 2..2^N + 1: Line i+1 contains a single integer: cow_i
* Line 1: One integer, the total distance traveled by all the cows

* Lines 2..2^N + 1: Line i+1 will contain one integer: the ith cow in
        the final configuration

3
8
5
2
3
4
7
1
6
50
1
6
4
7
2
3
5
8
#include<iostream>
#include<cstdio>
#include<algorithm>
const int maxn=1025;
int a[maxn],b[maxn];
int ans,k;
void a_array(int a[],int begin,int mid,int end,int b[])
{
    k=0;
    if(a[begin]>a[mid+1]){
        ans+=(mid+1-begin)*(end-begin+1);
        for(int i=mid+1;i<=end;i++)
            b[k++]=a[i];
        for(int i=begin;i<=mid;i++)
            b[k++]=a[i];
    }
    else {
        for(int i=begin;i<=mid;i++)
            b[k++]=a[i];
        for(int i=mid+1;i<=end;i++)
            b[k++]=a[i];
    }
    for(int i=0;i<k;i++)
        a[begin+i]=b[i];
}
void a_sort (int a[],int begin,int end,int b[])
{
    int mid;
    if(begin<end){
        mid=(begin+end)/2;
    a_sort(a,begin,mid,b);
    a_sort(a, mid+1, end, b);
    a_array(a, begin, mid, end, b);
    }
}
int main ()
{
    int n,t=1;
    while(~scanf("%d",&n)){
        ans=0;t=1;t<<=n;
        for(int i=0;i<t;i++)
            scanf("%d",&a[i]);
        a_sort(a, 0, t-1, b);
        printf("%d\n",ans);
        for(int i=0;i<t;i++)
            printf("%d\n",a[i]);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值