pytorch_搭建网络_层

本文详细介绍了卷积神经网络中的三个核心层——卷积层、池化层及激励函数的功能与工作原理。卷积层能够有效提取图像特征,通过局部连接和权值共享减少计算复杂度;池化层则通过降低图像分辨率来减少过拟合并加速训练过程;而激励函数通过引入非线性转换增强网络的表达能力。
摘要由CSDN通过智能技术生成

一、卷积层

1、卷积层是什么?能用来干什么?

卷积层的主要作用就是提取特征
它的优点:

  • 局部连接:卷积层通过卷积核将一个3*3的区域卷积化成一个特征数值,这样传到下一层的神经网络保留了前一层的特征而且减少了传递的成本。
  • 权值共享:一张图片使用卷积核扫描,整张图片全部使用卷积核的参数。
import torch
import torch.nn.functional as F
input =torch.tensor([[1,2,0,3,1],[1,2,5,3,1],[1,4,0,3,1],[1,2,6,4,1],[2,0,3,9,1]])

kernel =torch.tensor([[1,2,1],[1,2,1],[1,2,1]])

input = torch.reshape(input,(1,1,5,5))

kernel= torch.reshape(kernel,(1,1,3,3,))

print(input.shape)
print(kernel.shape)

output = F.conv2d(input,kernel,stride=1)
print(output)

output2 = F.conv2d(input,kernel,stride=2)
print(output2)

output3 = F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

#直接写的卷积,这里涉及到了conv2d是2维的神经网络扫描,可以设置:kernel卷积核、stride扫描的跨度、padding留白的大小

这里注意卷积conv2d的参数设置即可。

 self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

这就是一个卷积函数,可以对应官网查询卷积公式,有时候需要现推卷积参数。

二、池化层

1、池化层的作用?

为了降低数据量,减少过拟合,提高速度,来对图片进行合理的“降低画质”,在不影响机器理解的情况下来减少计算成本。

2、常见的池化方法

  • 最大池化:选取最大值进行提取。
  • 均值池化:计算出均值进行提取。

三、激励函数

1、激励函数是什么?有什么作用?

激活函数就是非线性的函数。
激活函数就是为了加强神经网络的表达能力。引入非线性函数作为激励函数,这样深层神经网络表达能力就更加强大(不再是输入的线性组合,而是几乎可以逼近任意函数)

具体的激励函数讲解看:激励函数详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值