leetcode-买卖股票/背包问题

模板

力扣

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/discuss/108870/Most-consistent-ways-of-dealing-with-the-series-of-stock-problems

力扣

python  版本的解法

LeetCode:188. 买卖股票的最佳时机 IV(python)_wk的博客-CSDN博客

122. 买卖股票的最佳时机 II

贪心

123 买卖股票的最佳时机3

与121买卖股票的最佳时机相同的解法,就是加一个从右边到左边的遍历。
从右边到左边的遍历,记录区间[i,j]之间的最大收益,用最大值-prices[i]。

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        #两次,分为左边和右边
        #左边就是1次收益的最大值那种情况
        min_price_left=prices[0]
        res_left=[0]
        for i in range(1,len(prices)):
            diff=prices[i]-min_price_left
            if prices[i]<min_price_left:
                min_price_left=prices[i]
            if diff>res_left[-1]:
                res_left.append(diff)
            else:
                res_left.append(res_left[-1])
        #从右边到左边
        max_prices_right=prices[-1]
        res_right=[0]
        for i in range(len(prices)-2,-1,-1):
            diff= max_prices_right - prices[i]
            if prices[i]>max_prices_right:
                max_prices_right=prices[i]
            if diff> res_right[0]:
                res_right.insert(0,diff)
            else:
                res_right.insert(0,res_right[0])
        res=max(res_left[-1],res_right[0])
        for i in range(len(prices)-1):
            if res_left[i]+res_right[i+1]>res:
                res=res_left[i]+res_right[i+1]
        return res

188. 买卖股票的最佳时机 IV


#状态转移方程
#共有两个变量,第几天,共交易几次。
#dp[i][k][0]表示第i天,交易k次,当天手里不持有股票
#dp[i][k][1]表示第i天,交易k次,当天手里持有股票,
#最后的结果是dp[i最大值][k最大值][0],最后肯定是股票出手的状态

#递推公式
#前一天k次交易,今天无操作,前一天k次交易,今天卖出
#dp[i][k][0]=dp[i-1][k][0],dp[i-1][k][1]+prices[i]
#前一天k次交易,今天无操作,前一天k-1次交易,今天买入。买入操作才会对k加1
#dp[i][k][1]=dp[i-1][k][1],dp[i-1][k-1][0]-prices[i]

class Solution:
    def maxProfit(self, k, prices):
        if not prices:
            return 0
        n = len(prices)
        max_k = n//2        # 最大交易次数
        if k >= max_k:      # k>最大交易次数,做 k=无穷大处理
            res = 0
            for i in range(n-1):
                res += max(0, prices[i+1]-prices[i])
            return res
        else:
            max_k = k
        # k<最大交易次数,动态规划
        dp = [[[0]*2 for _ in range(k+1)] for _ in range(n)]
        #初始化
        dp[0][0][1]=-float('inf')
        for i in range(1,max_k+1):
            dp[0][i][1] = -prices[0]
        for i in range(1, n):
            for k in range(1, max_k+1):
                dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1]+prices[i])
                dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0]-prices[i])
        return dp[n-1][max_k][0]


k=2
prices=[3,2,6,5,0,3]
n=len(prices)
dp=[[[0]*2 for _ in range(k+1)] for _ in range(n)]
print(dp)
#初始化
dp[0][0][1]=-float('inf')
for i in range(1,k+1):
    dp[0][i][1] = -prices[0]
for i in range(1,n):
    for k in range(1,k+1):
        dp[i][k][0]=max(dp[i-1][k][0],dp[i-1][k][1]+prices[i])
        dp[i][k][1]=max(dp[i-1][k][1],dp[i-1][k-1][0]-prices[i])
print(dp)
print(dp[n-1][k][0])

动态规划心得

力扣

首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

既然是要求最值,核心问题是什么呢?求解动态规划的核心问题是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值呗。

股票总结

通用思路:

LeetCode:121. 买卖股票的最佳时机(python)_wk的博客-CSDN博客_买卖股票的最佳时机python

第一题和第二题不用套公式,第一题直接遍历,第二题贪心就行了。其他的题目要套一下公式,注意单变量优化,k值过大时候的问题。

注意对比,买卖股票2(无次数限制)和买卖股票(无次数限制,有冷冻期)的差别,主要是一个是在单变量dp的时候,一个记录的是前一天的状态,一个记录的是前2天的状态。

121. 买卖股票的最佳时机

只能一次买入,这个题可以不套用模板做。

122. 买卖股票的最佳时机 II

与第一题不同的是,第二题是无限多次交易。可套用模板,将模板中的k去掉,因为k为无穷大,不受k的影响。

单变量优化。

class Solution:
    def maxProfit(self, prices):
        if not prices:
            return 0 
        dp_i_0, dp_i_1 = 0, float('-inf') 
        for i in range(len(prices)):
            temp = dp_i_0
            dp_i_0 = max(dp_i_0, dp_i_1 + prices[i])
            dp_i_1 = max(dp_i_1, temp - prices[i])
        return dp_i_0

不套用模板更简单,贪心法:

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        profit = 0
        for i in range(1, len(prices)):
            tmp = prices[i] - prices[i - 1]
            if tmp > 0: profit += tmp
        return profit

123. 买卖股票的最佳时机 III

套公式。

class Solution:
    def maxProfit(self, prices):
        if not prices:
            return 0
        n = len(prices)
        # 初始化状态
        dp = [[[0]*2 for _ in range(3)] for _ in range(n)]
        for k in range(3):
            dp[0][k][1] = -prices[0]
        # 从 i=1 处开始迭代
        for i in range(1, n):
            for k in range(1, 3):
                dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1]+prices[i])
                dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0]-prices[i])
        return dp[n-1][2][0]

 

 

class Solution(object):
    def maxProfit(self, prices):
        if not prices:
            return 0
        n = len(prices)
        def dfs(index,status,k):
            # 递归终止条件,数组执行到头了,或者交易了两次了
            if index==n or k==2:
                return 0
            # 定义三个变量,分别记录[不动]、[买]、[卖]
            a,b,c = 0,0,0
            # 保持不动
            a = dfs(index+1,status,k)
            if status:
                # 递归处理卖的情况,这里需要将k+1,表示执行了一次交易
                b = dfs(index+1,0,k+1)+prices[index]
            else:
                # 递归处理买的情况
                c = dfs(index+1,1,k)-prices[index]
            # 最终结果就是三个变量中的最大值
            return max(a,b,c)
        return dfs(0,0,0)

作者:wang_ni_ma
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/solution/wu-chong-shi-xian-xiang-xi-tu-jie-123mai-mai-gu-pi/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

status表示的是当前有没有持有股票。

188. 买卖股票的最佳时机 IV

套公式。

class Solution:
    def maxProfit(self, k, prices):
        if not prices:
            return 0
        n = len(prices)
        max_k = n//2        # 最大交易次数
        if k >= max_k:      # k>最大交易次数,做 k=无穷大处理
            res = 0
            for i in range(n-1):
                res += max(0, prices[i+1]-prices[i])
            return res
        else:
            max_k = k
        # k<最大交易次数,动态规划
        dp = [[[0]*2 for _ in range(k+1)] for _ in range(n)]
        for i in range(max_k+1):
            dp[0][i][1] = -prices[0]
        for i in range(1, n):
            for k in range(1, max_k+1):
                dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1]+prices[i])
                dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0]-prices[i])
        return dp[n-1][max_k][0]

309. 最佳买卖股票时机含冷冻期

套公式。

单变量优化

class Solution:
    def maxProfit(self, prices):
        if not prices:
            return 0
        # 初始化状态
        dp_i_0, dp_i_1 = 0, float('-inf')
        # 初始化前 2 天未持有股票状态的收益
        dp_pre_0 = 0           
        # 等同于 i=0 处开始迭代
        for i in range(len(prices)):
            # 记录前 1 天状态
            temp = dp_i_0
            # 更新当天状态
            dp_i_0 = max(dp_i_0, dp_i_1+prices[i])
            dp_i_1 = max(dp_i_1, dp_pre_0-prices[i])
            # 更新记录的前 1 天状态为前 2 天状态
            dp_pre_0 = temp
        return dp_i_0

01背包

dd大牛的《背包九讲》 - 知乎

问题描述

状态转移方程

空间优化

空间优化要倒叙遍历,因为,要保证f[v-c[i]]是在i-1状态的,v- c[i]比v小,如果正序遍历,则都是当前i状态的值,

倒叙遍历能保证,更新f[v]的时候,f[v-c[i]]是上一个状态更新的。

完全背包

状态转移方程和空间优化

零钱兑换

零钱兑换1,完全背包问题

dp[v]表示体积为v的时候,results是多少

class Solution(object):
    def coinChange(self, coins, amount):
        """
        :type coins: List[int]
        :type amount: int
        :rtype: int
        """
        #前i个物品,放入容量为v的背包的最大价值
        #前i个物品,放入容量为v的背包,并且把背包塞满,的组合数。
        #当前状态,等于,上一个状态(i-1)个物品,当前物品不放,则没有数量的加减
        #如果当前物品放,则有数量的加减
        #dp[i][j]=min(dp[i-1][j],dp[i-1][j-c[i]]+1),通过状态转移方程,
        #可看出这是完全背包问题,直接套完全背包的公式。与完全背包不同的是,这个题的初始状态要设置为最大值     
        dp=[float('inf') for _ in range(amount+1)]
        dp[0]=0
        for i in range(len(coins)):
            for j in range(1,amount+1):
                if j>=coins[i]:
                    dp[j]=min(dp[j],dp[j-coins[i]]+1)
        if dp[-1]!=float('inf'):
            return  dp[-1]
        return -1

零钱兑换2

也是完全背包问题

class Solution(object):
    def change(self, amount, coins):
        """
        :type amount: int
        :type coins: List[int]
        :rtype: int
        """
        dp=[0 for _ in range(amount+1)]
        dp[0]=1
        for i in range(len(coins)):
            for j in range(1,amount+1):
                if j>=coins[i]:
                    dp[j]=dp[j]+dp[j-coins[i]]
        return dp[-1]

组合总和

【PHP解法==LeetCode(动态规划4-(背包问题))】416.分割等和子集 && 322.零钱兑换 && 377.组合总和 && 474.一和零 && 139.单词拆分 && 494.目标和_YY-帆S的博客-CSDN博客

零钱兑换2实际上就是组合总和问题,以前组合组合用的是回溯法解决,这次用完全背包法,仔细体会两者复杂度的区别!!

72.编辑距离-字符串的动态规划

class Solution:
    def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype: int
        """
        n = len(word1)
        m = len(word2)
        
        # 有一个字符串为空串
        if n * m == 0:
            return n + m
        
        # DP 数组
        D = [ [0] * (m + 1) for _ in range(n + 1)]
        
        # 边界状态初始化
        for i in range(n + 1):
            D[i][0] = i
        for j in range(m + 1):
            D[0][j] = j
        
        # 计算所有 DP 值
        for i in range(1, n + 1):
            for j in range(1, m + 1):
                left = D[i - 1][j] + 1
                down = D[i][j - 1] + 1
                left_down = D[i - 1][j - 1] 
                if word1[i - 1] != word2[j - 1]:
                    left_down += 1
                D[i][j] = min(left, down, left_down)
        
        return D[n][m]

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

887. 鸡蛋掉落

解法1

经典动态规划:高楼扔鸡蛋

暴力递归的方法。

class Solution:
    def superEggDrop(self, K, N):
        memo = {}
        def dp(k, n):
            if (k, n) not in memo:
                if n == 0:
                    ans = 0
                elif k == 1:
                    ans = n
                else:
                    lo, hi = 1, n
                    # keep a gap of 2 X values to manually check later
                    while lo + 1 < hi:
                        x = (lo + hi) // 2
                        t1 = dp(k-1, x-1)
                        t2 = dp(k, n-x)

                        if t1 < t2:
                            lo = x
                        elif t1 > t2:
                            hi = x
                        else:
                            lo = hi = x
                    ans = 1 + min(max(dp(k-1, x-1), dp(k, n-x))
                                  for x in (lo, hi))

                memo[k, n] = ans
            #如果这个k n计算过了,直接返回就行。
            return memo[k, n]
        return dp(K, N)

312. 戳气球

经典动态规划:戳气球问题

力扣

打家劫舍

198. 打家劫舍

class Solution:
    def rob(self, nums: List[int]) -> int:
        if not nums:
            return 0

        size = len(nums)
        if size == 1:
            return nums[0]
        
        dp = [0] * size
        dp[0] = nums[0]
        dp[1] = max(nums[0], nums[1])
        for i in range(2, size):
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
        
        return dp[size - 1]

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/house-robber/solution/da-jia-jie-she-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值