地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1 输出:3
示例 2:
输入:m = 3, n = 1, k = 0 输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
递归参数: 当前元素在矩阵中的行列索引值 i 和 j,两者的数位和的和
终止条件: 行列索引越界 或 数位和超出目标值 或 当前元素已访问过,返回0,代表不计入能够到达的格子的总数中
递推工作:
1.标记当前单元格:将索引值(i, j)存在visited数组中,代表已经访问过这个元素
2.搜索下一单元格:计算当前元素的右,下元素的单元格索引值的数位和,并开启下层递归
回溯返回值:
返回 1+右方搜索的可达解的总数+下方搜索的可达解的总数 ,代表从本单元格递归搜索的可达解总数
注:本题和上一题 剑指offer12.矩阵中的路径 比较相似,不同之处在于,矩阵中的路径的起始位置是不确定的,因此每走一格都是有四个方向可以选择,本题起始位置确定在(0,0),因此只有往右和往下两个方向。
代码实现(JavaScript):
/**
* @param {number} m
* @param {number} n
* @param {number} k
* @return {number}
*/
var movingCount = function(m, n, k) {
const row = m
const col = n
//记录走过的格子,避免重复
const visited = new Array(row).fill(0).map(() => new Array(col).fill(false))
const board = (i,j) => {//判断是否越界
return i<0 || i>=row || j<0 || j>=col
}
//计算数位和
const jieguo = (i,j) => {
let ige = i%10
let ishi = parseInt((i%100)/10)
let ibai = parseInt(i/100)
let jge = j%10
let jshi = parseInt((j%100)/10)
let jbai = parseInt(j/100)
return ige+ishi+ibai+jge+jshi+jbai
}
//递归深搜
function dfs(x,y){
if(jieguo(x,y) > k || board(x,y) || visited[x][y]) return 0 //0代表本次递归不在最终结果中,代表当前格子不能走
else{
visited[x][y] = true
return 1+dfs(x+1,y)+dfs(x,y+1) //起始位置固定,只有向右和向下两个方向
}
}
return dfs(0,0)
};