P1002 [NOIP2002 普及组] 过河卒

 

题目描述

棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,AA 点 (0,0)(0,0)、BB 点 (n,m)(n,m),同样马的位置坐标是需要给出的。

 

现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 BB 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

答案

注意到兵只能向下或者向右移动,所以当前节点的路径条数等于由正上方节点的路径数加上左方节点的路径数相加,如果该点在马的范围内,则直接置为0

//
// Created by skywircL on 1/10/25.
//
#include <cstring>
#include <iostream>
#include <stdio.h>
#include <algorithm> // 需要包含 algorithm 头文件>
#include <cctype>
#include <string>

using namespace std;

void toLowerCase(string &str) {
    transform(str.begin(), str.end(), str.begin(), ::tolower);
}

int num[21][21];
long long dp[21][21];

int main() {
    int m, n, p, q;
    cin >> m >> n >> p >> q;
    if (p - 1 >= 0) {
        num[p - 1][q + 2] = -1;
        if (q - 2 >= 0) {
            num[p - 1][q - 2] = -1;
        }
    }
    if (p - 2 >= 0) {
        num[p - 2][q + 1] = -1;
        if (q - 1 >= 0) {
            num[p - 2][q - 1] = -1;
        }
    }
    if (q - 1 >= 0) {
        num[p + 2][q - 1] = -1;
    }
    if (q - 2 >= 0) {
        num[p + 1][q - 2] = -1;
    }

    num[p][q] = -1;
    num[p + 1][q + 2] = -1;
    num[p + 2][q + 1] = -1;
    dp[0][0] =1;
    for (int i = 0; i <= m; i++) {
        for (int j = 0; j <= n; ++j) {
            if (i == 0) {
                if (j!=0){
                    if (num[i][j]!= -1){
                        dp[i][j]=dp[i][j-1];
                    }else{
                        dp[i][j]=0;
                    }

                }
            }
            if (j == 0) {
                if (i!=0){
                    if (num[i][j]!= -1){
                        dp[i][j]=dp[i-1][j];
                    }else{
                        dp[i][j]=0;
                    }
                }
            }
            if (i!=0&&j!=0){
                if (num[i][j]!=-1){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }else {
                    dp[i][j] =0;
                }
            }
            }

    }
    cout<<dp[m][n];

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值