某幢大楼有100层。你手里有两颗一模一样的玻璃珠。当你拿着玻璃珠在某一层往下扔的时候,一定会有两个结果,玻璃珠碎了或者没碎。这幢大楼有个临界楼层。低于它的楼层,往下扔玻璃珠,玻璃珠不会碎,等于或高于它的楼层,扔下玻璃珠,玻璃珠一定会碎。玻璃珠碎了就不能再扔。现在让你设计一种方式,使得在该方式下,最坏的情况扔的次数比其他任何方式最坏的次数都少。也就是设计一种最有效的方式。
解决方案1(一个非常容易理解的方案,但是时间复杂度较高)
- 算法分析
最容易理解的方法是递归。
当楼层层高为n时,我们使用第一个玻璃珠检查第i层是否能摔碎。
- 如果摔碎了,我们只好谨慎的使用第二个玻璃珠,从第1层开始检查,直到第i-1层。共检查了1+(i-1)次。
- 如果木有摔碎,我们需要对上面的(n-i)层进行检查,此时与检查一个层高为(n-i)的楼的方法是一样的。我们假设对上面的(n-i)层的检查的最佳方法是P(n-i)。共检查了1+P(n-i)次。
因此从i层开始检查的这种方式的最差情况是1+(i-1)与1+P(n-i)较差的那个(次数较多的那个)。