两个人约好12:00-13:00之间见面,先到的人等后到的人不超过15分钟,等待时间超过15分钟,先到的人会离去,问两人相遇的概率。

两个人约好12:00-13:00之间见面,先到的人等后到的人不超过15分钟,等待时间超过15分钟,先到的人会离去,问两人相遇的概率。


设两个人到达的时间分别为x,y。将12:00~13:00这个时间段看做0~1的话,15分钟即是1/4。

由题设得,0<x,y<1

若两人相遇,则 |x-y| <= 1/4

用图表示为


即中间部分的面积,为1-2*[(1/2)*(3/4)2] = 7/16


原文作者:MaggieDorami

版权声明:文章原创,欢迎转载,转载时请务必加上原文超链接、作者信息和本声明。

这个题描述的是一个概率模型,可以看作是两个独立事件的概率乘积。首,我们考虑两个到达时间的分布: 1. 设每个到达会面地点的时间是一个随机变量,我们可以假设它服从均匀分布,因为题目没有提供更具体的分布信息,所以假设他们最有可能在6点到7点之间任意时刻到达,区间长度为1小时。 2. 对于每个参与者来说,他/她按时到达(即在6:00到6:59之间)的概率是 \( \frac{1}{60} \)(一个小时有60分钟),迟到(即在7:00之后)的概率是 \( \frac{5}{60} = \frac{1}{12} \),因为需要等待20分钟才能离开,所以实际迟到的概率是 \( \frac{1}{12} + \frac{1}{60} = \frac{7}{60} \)。 接下来计算他们会面的概率。由于是两个的事件,我们需要同时考虑他们都按时到达或都迟到的情况。者互斥,因此会面的概率等于这两个事件概率的和: - 按时到达会面的概率 = \( (\frac{1}{60})^2 = \frac{1}{3600} \) - 都迟到并相互等待超过20分钟会面的概率 = \( (\frac{7}{60})^2 = \frac{49}{3600} \) 者的总和就是他们会面的全部概率: \( P(\text{会面}) = \frac{1}{3600} + \frac{49}{3600} = \frac{50}{3600} = \frac{5}{360} \) 转换成小数形式大是0.013889或1.3889%。 在R语言中,你可以用下面的代码来模拟这个过程并得到近似结果: ```R # 定义随机变量到达时间 arrive_time <- runif(1000000, min = 360, max = 390) # 6:00到7:00,假设单位是分钟 # 计算准时到达、迟到或错过的数 on_time <- arrive_time <= 360 late <- arrive_time > 360 & arrive_time <= 380 missed <- arrive_time > 380 # 会面情况的计数 met_on_time <- sum(on_time & on_time) met_late <- sum(late & late) total_meetings <- met_on_time + met_late # 会面的概率 probability_meet = total_meetings / length(arrive_time) probability_meet ``` 这将给出一个接近理论值的结果。如果你想要精确到百分比,记得把结果除以100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值