十进制数转换成N进制数

  • 将一个十进制整数转换为N进制的方法有
    • 除N取余法

所谓除N取余法,就是将一个是进制数除以N,得到一个商和一个余数,并记下这个余数r0。

然后将商作为被除数除以N,得到一个商和一个余数,并记下这个余数r1。

不断重复以上过程,直到商为0为止。

假设一共除了m次,则得到的N进制整数从高位到低位为r(m-1) ... r2 r1 r0。


如十进制整数10转化为2进制的过程为:

10/2 = 5余0

5/2 = 2余1

2/2 = 1余0

1/2 = 0余1

所以二进制形式为1010

    • 降幂法

所谓降幂法就是将十进制整数不断减去与该整数最接近的N进制整数的位权,如果够减m次则对应N进制位上的数字为m(m<N),否则为0。得到的差值作为新的被减数进行下一次计算,直到被减数为0。


如十进制数130转换成8进制的过程为:

130-82=66

66-82=2

2-8(不够减)

2-1=1

1-1=1

所以对应的8进制整数为202

  • 十进制小数转换为N进制小数的方法为
    • 乘N取整法

所谓乘N取整法是将十进制的小数乘以N,得到的整数部分作为小数点后第一位。剩余的小数部分再乘以N,得到的整数部分作为小数点后第二位。直到剩余小数部分为0,或达到一定精度为止。


如十进制的0.54转换为16进制的过程为:

0.55*16=8.8 --8

0.8*16=12.8 --12(C)

0.8*16=12.8 --12(C)

0.8*16=12.8 --12(C)

...

由于不能被精确的转换,我们可以只取前4位,为0.8CCC

  • 一般的十进制数转换为N进制数

分别转换整数和小数部分。


原文作者:MaggieDorami
版权声明:文章原创,欢迎转载,转载时请务必加上原文超链接、作者信息和本声明。



### 回答1: 首先将M除以N得到商Q和余R,余R就是转化后的最低位的字。然后将商Q除以N得到新的商和余,余就是转化后的下一位字。如此循环,直到商为0,转化结束。将余倒序排列即为最终结果。 例如,将十进制125转化为八进制: 125 ÷ 8 = 15 … 5,余为5,转化后的最低位为5; 15 ÷ 8 = 1 … 7,余为7,转化后的下一位为7; 1 ÷ 8 = 0 … 1,余为1,转化后的最高位为1。 所以,125的八进制为175。 ### 回答2: 要将一个十进制M转换为N进制,可以使用除N取余法。步骤如下: 1. 将M除以N,得到商Q和余R。 2. 将R作为N进制的一位字。 3. 将Q作为新的十进制,重复步骤1和2,直到Q为0为止。 最后,将得到的余按照颠倒的顺序排列,即为M的N进制表示。 下面以将十进制100转为8进制为例进行演示: 1. 100 ÷ 8 = 12 ... 4,余为4。 2. 12 ÷ 8 = 1 ... 4,余为4。 3. 1 ÷ 8 = 0 ... 1,余为1。 按照颠倒的顺序排列得到4 4 1,所以100的8进制表示为441。 需要注意的是,如果N大于10,那么大于9的余将用字母表示。例如,如果要将十进制100转为16进制,余10将用A表示,余11用B表示,以此类推。 此外,对于小转换,可以将小点后的部分分别乘以N,然后按照上述方法转换为相应的N进制。 ### 回答3: 将十进制M转化为N进制,可以使用“除N取余法”来进行计算。 首先,我们将M除以N,得到商Q和余R1。将R1作为第N进制的最低位。 然后,再将Q除以N,得到新的商Q2和余R2。将R2作为第N进制的次低位。 重复上述步骤,直到商为0为止。每次计算时,将得到的余从低位到高位排列起来即可得到最终的N进制。 举例说明:假设要将十进制123转化为八进制。 首先,将123除以8,商为15,余为3。则八进制的最低位为3。 然后,将15除以8,商为1,余为7。则八进制的次低位为7。 最后,将1除以8,商为0,余为1。则八进制的最高位为1。 将得到的余从低位到高位排列起来,则123的八进制表示为173。 因此,通过“除N取余法”,我们可以将十进制M转化为N进制
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值