Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
思路:
观察可知:
| 0 0 0 0 -- 0
| 0 0 0 1 -- 1
| 0 0 1 0 -- 1
| 0 0 1 1 -- 2
| 0 1 0 0 -- 1
| 0 1 0 1 -- 2
| 0 1 1 0 -- 2
| 0 1 1 1 -- 3
| 1 0 0 0 -- 1
| 1 0 0 1 -- 2
| 1 0 1 0 -- 2
| 1 0 1 1 -- 3
| 1 1 0 0 -- 2
| 1 1 0 1 -- 3
| 1 1 1 0 -- 3
| 1 1 1 1 -- 4
题解:
#include <vector>
std::vector<int> countBits(int num) {
std::vector<int> result(num + 1); // extra 0 at beginning
result[0] = 0;
int z = 1;
while((z << 1) <= num) {
for(int i = 0; i < z; ++i) {
result[i + z] = result[i] + 1;
}
z <<= 1;
}
for(int i = 0; z <= num; ++i, ++z) {
result[z] = result[i] + 1;
}
return result;
}