无核显CPU + P40 + N卡亮机卡 windows 10 配置 实现 P40 炼丹与游戏

无核显CPU + P40 + N卡亮机卡 windows 10 配置 实现 P40 炼丹与游戏

用了此方法成功双卡(cpu1700x + gtx 1080+p40)正常运行

(注: 这两天我的gtx 1080 挂了,买了块亮机卡nvidia 750ti 按照该方法+部分修改(下面标注部分修改的地方)
(新增注电脑上跑的时候有可能会有这种情况代码里指定的gpu id 和实际使用的gpu id 是相反的,比如nvidia-smi是p40 是卡1,但是你跑代码的时候指定为卡0就可以用p40 了)

鲁大师显卡模块的跑分:由750ti 单独跑9w左右 提升到 使用P40 计算750ti 输出的 37w左右)

操作步骤

Step1

安装最新显卡驱动,点下一步安装前将驱动程序解压的文件夹(一般在系统盘NVIDIA文件夹中),拷贝到桌面。

Step2

正常安装完驱动后,在设备管理器中有一个显示视频器,右键更新驱动程序,选择从本机找驱动程序,浏览到桌面拷贝的文件夹中/international/Display.Driver,手动安装(让我从计算机上。。。这个选项,别点下一步),选择Tesla T4的驱动
提示框选是,等待安装完成

Step3

打开注册表(win+R --> regedit),找到“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class{4d36e968-e325-11ce-bfc1-08002be10318}”
0000开始就是这些显卡的下标,你的Tesla具体是具体是哪个卡,看右侧“DriverDesc”字段确定。
“AdapterType”,dword值,改为1
新建一个键:“GridLicensedFeatures”,dword值,改为 7。(这一步是通过注册表强制打开Grid驱动支持,即打开GPUZ中所有显卡功能)

这里是部分修改的: tesla 卡这边修改:FeatureScore, 值从cf修改为d1 (十六进制,hex)
tesla 卡这边修改: 新增或者修改 EnableMsHybrid, 类型为DWORD(32bit) ,值为 1
输出卡下面(比如我的是输出卡 项 Driver Desc 描述的是 750ti):新增或者修改 EnableMsHybrid, 类型为DWORD(32bit) ,值为 2

Step4

在设备管理器中禁用T4再启用

Step5

重启电脑

安装完成后,运行nvidia-smi 如下所示
在这里插入图片描述
在这里插入图片描述

Step 6

可以在windows 10桌面 --> 右键 -->显示设置 --> 图形设置 --> 中 为指定的游戏 选择指定显卡
在这里插入图片描述

部分图例

单独使用750ti 的鲁大师显卡评分

在这里插入图片描述

使用p40计算 gtx 750ti 输出的鲁大师显卡评分

(todo 增加贴图)

备注

备注:若后续更新驱动或者更新windows 10 之后导致P40显卡掉了,可以按照上述步骤从步骤2开始再来一遍即可。

参考链接

  • 参考链接:https://www.bilibili.com/video/BV13W4y1s7so/
  • 上述视频对应的评论
  • 新增修改部分参考链接: https://www.bilibili.com/video/BV1tY411D74p/
3090 GPU,作为NVIDIA的一块高端,拥有强大的并行计,特别适合训练深度学习模型,其中batch size是指在一次前向传播中输入模型的数据样本数量。选择合适的batch size取决于多个因素: 1. **GPU内存大小**:RTX 3090有24GB的存,对于大规模的深度学习模型,如Transformer或GAN,大batch size可能需要足够的内存来存储整个批次的张量。 2. **模型复杂度**:复杂的模型通常需要更小的batch size,以避免内存溢出,而简单模型则可以处理更大的batch。 3. **训练效率**:虽然大batch size能够更快地更新模型参数,但也可能导致GPU利用率不高,因为较小的batch可能更容易导致收敛。 4. **硬件限制**:除了GPU内存,还要考虑CPU和内存带宽对大batch的支持。如果数据加载或内存复制速度有限,也可能需要减小batch size。 5. **计资源优化**:在分布式训练环境中,大batch size可以更好地利用多台GPU,但需要确保网络通信开销不会成为瓶颈。 一般来说,对于3090,推荐的batch size范围可能是几百到几千之间,具体数值需要根据模型架构、数据集大小、内存使用情况以及训练策略进行调整。如果你需要更精确的建议,还需要考虑你的具体应用场景和计资源的配比。相关问题: 1. 如何在内存紧张的情况下调整batch size? 2. 在训练过程中如何平衡batch size和训练速度? 3. 如果我的数据集非常大,如何有效地利用3090的batch size?
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值