优化设置TESLA T4/P40等显卡在部分主板无法识别情况

针对TESLA T4和P40显卡在某些主板上无法识别的问题,通过调整BIOS设置,具体操作为启用'above 4GB MMIO BIOS'选项,能有效解决资源冲突,确保显卡正常识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可调式设置bios参数,参考如下:

 将above 4GB MMIO BIOS更改为enable即可解决资源冲突问题

### Tesla P40 GPU Driver Recommendations for Optimal Performance and Compatibility For ensuring the best performance and compatibility with a Tesla P40, installing the latest version of Nvidia drivers is crucial as it allows Windows 10 to recognize the Tesla P40 as an available graphics card in Device Manager[^1]. The installation process should be straightforward; however, choosing the correct driver package tailored specifically for Tesla series GPUs ensures stability and access to all features designed for this hardware. After confirming that the Tesla P40 appears correctly within the operating system, using software like MSI Afterburner can provide real-time monitoring capabilities including temperature checks which are vital for maintaining optimal working conditions of the GPU. To further enhance reliability and efficiency when running applications or performing tasks on systems equipped with Tesla P40: - Always verify if there are any specific requirements from application vendors regarding supported versions of CUDA Toolkit since these may dictate what range of NVIDIA drivers would work best. - Keep updated not only about general releases but also pay attention to updates labeled 'Game Ready' or those recommended by professional communities focused around deep learning and scientific computing where Tesla cards excel. By adhering closely to both official guidelines provided by manufacturers such as NVIDIA alongside community feedback concerning particular use cases involving Tesla P40s, one can achieve balanced settings promoting longevity while maximizing computational power offered through proper configuration choices made during setup phases. ```python import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) print(f'Total memory: {info.total}') print(f'Free memory: {info.free}') print(f'Used memory: {info.used}') nvidia_smi.nvmlShutdown() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米可工控

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值