计算Accrual的时候的不同计算方式汇总20200731

这篇博客总结了Larson等人的论文,该论文详细梳理了会计学中计算Accruals的不同方法,包括总Accruals和Operating Accruals的计算。主要分为工作资本Accruals、非现金资产和负债Accruals等五组。大多数研究使用工作资本Accruals,但也涉及非当前Accruals的测量。文章讨论了不同Accruals指标的优缺点,并引用了Dechow和Richardson等人的研究作为对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算Accrual的时候的不同计算方式汇总20200731

简介

在使用ACCRUAL作为PROXY的时候,通常头疼于数据库中的不同变量应该如何排列组合,之前找到一篇由 Larson et. al (2017) 发的会计相关论文中给出了一个汇总,主要汇总的如何计算total accrual 和 operating accrual。非常好用!
文章全称为:Defining, Measuring and Modeling Accruals: A Guide for Researchers,可在SCHOLAR上面找到。

作者关于这个SURVEY的介绍

A voluminous literature examines accounting accruals. We systematically survey the definitions and empirical accrual measures used in the prior archival literature. This portion of our study is not intended to be a comprehensive survey, but rather to illustrate the diversity of accrual definitions and measurements used in the accounting literature. A Web of Science search for variants of the word “accrual” in the title of publications from The Accounting Review, Contemporary Accounting Research, Journal of Accounting and Economics, Journal of Acc

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值