先从以上思维导图梳理,首先要知道索引的是做什么的,再者了解其内部使用的模型,结合当前流行的数据库引擎InnoDB去分析索引,进一步分析索引的使用和维护。
1、索引的常见模型
索引作用:为了提高查询效率。
实现索引的方式却有很多种,也就是有多种索引模型的意思。用于提高读写效率的数据结构很多,这里介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。
主要从使用的角度,简单分析三种模型的区别:
1.1、哈希表
使用:适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。
概念:一种以键 - 值(key-value)存储数据的结构,只要输入待查找的键即 key,就可以找到其对应的值即 Value。思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。
不可避免地,多个 key 值经过哈希函数的换算,会出现hash冲突的情况。处理这种情况的一种方法是,拉出一个链表。(出现hash冲突,hash冲突之后可以使用hash+链表的方式解决,或者类似java中的hashmap采用hash+链表+红黑树的方式。也可以采用在此hash,向后移动等方式解决hash冲突。hash冲突是无法避免的,只要采用hash的方式就有可能会出现hash冲突。)
key值的计算:把key通过hash计算成确定的位置,最初是取余数,把余数相同的放到同一位置,这个位置叫做哈希槽。哈希槽相同的key就会产生哈希碰撞,碰撞后就会挂在同一链表上。查找的时候先通过key找到哈希槽,再遍历链表找到对应key匹配的值。
假设,现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:
哈希表示意图
图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。
需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。
1.2、有序数组
适用:只适用于静态存储引擎,等值查询和范围查询场景中。
缺点:有序数组相当于数组,在查询方面效率较高,插入数据需要移动位置,效率较低。
根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。查 ID_card_n2 对应的名字,用二分法就可以快速得到,时间复杂度是 O(log(N))。
同时也支持范围查询。查身份证号在[ID_card_X, ID_card_Y]区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。
1.3、二叉搜索树
特点:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。查 ID_card_n2,搜索顺序: UserA -> UserC -> UserF -> User2 。
时间复杂度是:O(log(N))
为了维持 O(log(N)) 的查询复杂度,需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。
2、InnoDB 的索引模型
InnoDB 中,InnoDB 使用了 B+ 树索引模型,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。(数据都是存储在 B+ 树中的)
每一个索引在 InnoDB 里面对应一棵 B+ 树。
假设有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;
表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。
从图中看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。
2.1、主键索引
概念:叶子节点存的是整行数据(如ID主键300对应R3整行数据)。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。
2.2、非主键索引
概念:叶子节点内容是主键的值(如索引k=1对应ID主键100)。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。
问题:主键索引和普通索引的查询有什么区别?
- 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
- 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。
说明基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。
3、索引维护
以InnoDB数据库引擎的B+树索引模型,此图为例:
B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护.
正常情况下:如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。
非正常情况下:如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去
3.1、页分裂
理解:非正常情况下需要申请新的数据页,然后挪动数据数据过去,这种情况叫做页分裂。
影响:降低性能、数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。
3.2、页合并
理解:当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。也可以认为是分裂过程的逆过程。
3.3、问题探讨?
分析一下哪些场景下应该使用自增主键,而哪些场景下不应该?
自增主键是指自增列上定义的主键,在建表语句的定义: NOT NULL PRIMARY KEY AUTO_INCREMENT。
插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。
自增主键的插入数据模式,符合递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
有业务逻辑的字段做主键,保证有序插入往往不容易,写数据成本相对较高。除了考虑性能外,若存储空间的角度分析。假设表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。
主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
从性能和存储空间方面考量,自增主键往往是更合理的选择。
对于适合用业务字段直接做主键的场景?
- 只有一个索引;
- 该索引必须是唯一索引。