大数据学习之路 --- Spark(内存计算框架)

Spark是基于内存计算的大数据并行计算框架。spark基于内存计算,提高了在大数据环境下数据处理的的实时性,同时保证了高容错性和高可伸缩性。

                                                                                            ---<<Spark大数据处理技术,应用与性能优化>>

 

Spark中有很多内容,本篇文章只讲其中的Spark core ,Spark sql ,Spark stream。

 

Spark core:

  • RDD:

RDD 是Resilient Distributed Dataset的简称。它是Apache Spark的基本数据结构。它是一个不可变的对象集合,在集群的不同节点上进行计算,可以理解为是一个数据分布在各个不同节点上的数据集合,当对它进行操作计算时,实际上是对各个节点上的数据进行计算。

Resilient:即在RDD lineage(DAG)的帮助下具有容错能力,能够重新计算由于节点故障而丢失或损坏的数据分区。

Distributed:数据分布在多个节点上。

Dataset:表示所操作的数据集。用户可以通过JDBC从外部加载数据集,数据集可以是JSON文件、CSV文件、文本文件或数据库

 

RDD的特点:

1、内存计算:它将中间计算结果存储在分布式内存(RAM)中,而不是磁盘中。

2、延迟计算:Apache Spark中的所有transformation都是惰性的,因为它们不会立即计算结果,它们会记住应用于数据集的那些transformation。直到action出现时,才会真正开始计算。

3、容错性:Spark RDDs能够容错,因为它们跟踪数据沿袭信息,以便在故障时自动重建丢失的数据。

4、不可变性:你可以通过对RDD计算得到新的RDD,但是无法改变现有RDD内的数据。跨进程共享数据是安全的。它也可以在任何时候创建或检索,这使得缓存、共享和复制变得容易。因此,它是一种在计算中达到一致性的方法。

5、分区性:partition是Spark RDD中并行性的基本单元,每个分区都是数据的逻辑分区。Partition—task一 一对应

6、持久化:用户可以声明他们将重用哪些RDDs,并为它们选择存储策略。

7、数据本地性:RDDs能够定义计算分区的位置首选项。位置首选项是关于RDD位置的信息。

 

RDD的操作:

RDD的操作分为两种,一种是transformation操作,一种是action操作。

 

transformation:

得到的结果还是一个RDD,都是延迟操作的函数,如:map(), filter(), reduceByKey()。

transformation有两种类型:窄变换、宽变换(窄依赖、宽依赖)。

窄变换:它是map、filter这样数据来自一个单独的分区的操作。即输出RDD分区中的数据,来自父RDD中的单个分区。

宽变换:在子RDD单个分区中计算结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值