Spark是基于内存计算的大数据并行计算框架。spark基于内存计算,提高了在大数据环境下数据处理的的实时性,同时保证了高容错性和高可伸缩性。
---<<Spark大数据处理技术,应用与性能优化>>
Spark中有很多内容,本篇文章只讲其中的Spark core ,Spark sql ,Spark stream。
Spark core:
- RDD:
RDD 是Resilient Distributed Dataset的简称。它是Apache Spark的基本数据结构。它是一个不可变的对象集合,在集群的不同节点上进行计算,可以理解为是一个数据分布在各个不同节点上的数据集合,当对它进行操作计算时,实际上是对各个节点上的数据进行计算。
Resilient:即在RDD lineage(DAG)的帮助下具有容错能力,能够重新计算由于节点故障而丢失或损坏的数据分区。
Distributed:数据分布在多个节点上。
Dataset:表示所操作的数据集。用户可以通过JDBC从外部加载数据集,数据集可以是JSON文件、CSV文件、文本文件或数据库
RDD的特点:
1、内存计算:它将中间计算结果存储在分布式内存(RAM)中,而不是磁盘中。
2、延迟计算:Apache Spark中的所有transformation都是惰性的,因为它们不会立即计算结果,它们会记住应用于数据集的那些transformation。直到action出现时,才会真正开始计算。
3、容错性:Spark RDDs能够容错,因为它们跟踪数据沿袭信息,以便在故障时自动重建丢失的数据。
4、不可变性:你可以通过对RDD计算得到新的RDD,但是无法改变现有RDD内的数据。跨进程共享数据是安全的。它也可以在任何时候创建或检索,这使得缓存、共享和复制变得容易。因此,它是一种在计算中达到一致性的方法。
5、分区性:partition是Spark RDD中并行性的基本单元,每个分区都是数据的逻辑分区。Partition—task一 一对应
6、持久化:用户可以声明他们将重用哪些RDDs,并为它们选择存储策略。
7、数据本地性:RDDs能够定义计算分区的位置首选项。位置首选项是关于RDD位置的信息。
RDD的操作:
RDD的操作分为两种,一种是transformation操作,一种是action操作。
transformation:
得到的结果还是一个RDD,都是延迟操作的函数,如:map(), filter(), reduceByKey()。
transformation有两种类型:窄变换、宽变换(窄依赖、宽依赖)。
窄变换:它是map、filter这样数据来自一个单独的分区的操作。即输出RDD分区中的数据,来自父RDD中的单个分区。
宽变换:在子RDD单个分区中计算结果