一、Spark概述
Spark最初由美国加州伯克利大学(UCBerkeley)的AMP(Algorithms, Machines and People)实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。Spark在诞生之初属于研究性项目,其诸多核心理念均源自学术研究论文。2013年,Spark加入Apache孵化器项目后,开始获得迅猛的发展,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(即Hadoop、Spark、Storm)
二、Spark的特点
Spark计算框架在处理数据时,所有的中间数据都保存在内存中,从而减少磁盘读写操作,提高框架计算效率。同时Spark还兼容HDFS、Hive,可以很好地与Hadoop系统融合,从而弥补MapReduce高延迟的性能缺点。所以说,Spark是一个更加快速、高效的大数据计算平台。
特点可以概括为以下四点
1:运行速度快
2:容易使用
3:通用性
4:运行模式多样
Spark支持使用Scala Java Python和R语言编程,由于Spark采用Scala语言进行开发,因此建议采用Scala语言进行Spark应用程序的编写,采用Scala语言编写Spark应用程序,可以获得最好的性能,和其他语言相比,Scala主要有以下三个方面的优势
1:Java代码比较繁琐
2:Python语言并发性能不好
3:Scal